Volume 112, Issue 7, Pages (April 2017)

Slides:



Advertisements
Similar presentations
Dynamic Molecular Structure of DPPC-DLPC-Cholesterol Ternary Lipid System by Spin- Label Electron Spin Resonance  Yun-Wei Chiang, Yuhei Shimoyama, Gerald.
Advertisements

Comparing Experimental and Simulated Pressure-Area Isotherms for DPPC
Investigation of Domain Formation in Sphingomyelin/Cholesterol/POPC Mixtures by Fluorescence Resonance Energy Transfer and Monte Carlo Simulations  Monica.
Quantitative Coherent Anti-Stokes Raman Scattering Imaging of Lipid Distribution in Coexisting Domains  Li Li, Haifeng Wang, Ji-Xin Cheng  Biophysical.
Probing Membrane Order and Topography in Supported Lipid Bilayers by Combined Polarized Total Internal Reflection Fluorescence-Atomic Force Microscopy 
Volume 108, Issue 12, Pages (June 2015)
Scott D. Shoemaker, T. Kyle Vanderlick  Biophysical Journal 
Diffusion in a Fluid Membrane with a Flexible Cortical Cytoskeleton
Sphingomyelin/Phosphatidylcholine/Cholesterol Phase Diagram: Boundaries and Composition of Lipid Rafts  Rodrigo F.M. de Almeida, Aleksandre Fedorov, Manuel.
Volume 99, Issue 10, Pages (November 2010)
Physical Properties of Escherichia coli Spheroplast Membranes
Volume 112, Issue 7, Pages (April 2017)
Composition Fluctuations in Lipid Bilayers
Juan M. Vanegas, Maria F. Contreras, Roland Faller, Marjorie L. Longo 
Joseph M. Johnson, William J. Betz  Biophysical Journal 
Pulsatile Lipid Vesicles under Osmotic Stress
Terhi Maula, Md. Abdullah Al Sazzad, J. Peter Slotte 
Christa Trandum, Peter Westh, Kent Jørgensen, Ole G. Mouritsen 
Near-Critical Fluctuations and Cytoskeleton-Assisted Phase Separation Lead to Subdiffusion in Cell Membranes  Jens Ehrig, Eugene P. Petrov, Petra Schwille 
Volume 107, Issue 12, Pages (December 2014)
Tracking Phospholipid Populations in Polymorphism by Sideband Analyses of 31P Magic Angle Spinning NMR  Liam Moran, Nathan Janes  Biophysical Journal 
Volume 113, Issue 6, Pages (September 2017)
Volume 113, Issue 9, Pages (November 2017)
Raft Formation in Lipid Bilayers Coupled to Curvature
Mechanical Distortion of Single Actin Filaments Induced by External Force: Detection by Fluorescence Imaging  Togo Shimozawa, Shin'ichi Ishiwata  Biophysical.
Experimental and Computational Studies Investigating Trehalose Protection of HepG2 Cells from Palmitate-Induced Toxicity  Sukit Leekumjorn, Yifei Wu,
Lipid Interactions and Organization in Complex Bilayer Membranes
Modulating Vesicle Adhesion by Electric Fields
Benjamin L. Stottrup, Sarah L. Keller  Biophysical Journal 
Volume 113, Issue 11, Pages (December 2017)
Volume 114, Issue 12, Pages (June 2018)
Aymeric Chorlay, Abdou Rachid Thiam  Biophysical Journal 
Volume 93, Issue 2, Pages (July 2007)
Yuno Lee, Philip A. Pincus, Changbong Hyeon  Biophysical Journal 
Senthil Arumugam, Eugene P. Petrov, Petra Schwille  Biophysical Journal 
Direct Visualization of Lipid Domains in Human Skin Stratum Corneum's Lipid Membranes: Effect of pH and Temperature  I. Plasencia, L. Norlén, L.A. Bagatolli 
Membrane Elasticity in Giant Vesicles with Fluid Phase Coexistence
T.M. Okonogi, H.M. McConnell  Biophysical Journal 
Sarah L. Veatch, Sarah L. Keller  Biophysical Journal 
Volume 105, Issue 9, Pages (November 2013)
Volume 110, Issue 3, Pages (February 2016)
Volume 99, Issue 1, Pages (July 2010)
The Standard Deviation in Fluorescence Correlation Spectroscopy
Volume 113, Issue 6, Pages (September 2017)
G. Garbès Putzel, Mark J. Uline, Igal Szleifer, M. Schick 
Volume 110, Issue 7, Pages (April 2016)
Lipid Raft Composition Modulates Sphingomyelinase Activity and Ceramide-Induced Membrane Physical Alterations  Liana C. Silva, Anthony H. Futerman, Manuel.
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Acyl Chain Length and Saturation Modulate Interleaflet Coupling in Asymmetric Bilayers: Effects on Dynamics and Structural Order  Salvatore Chiantia,
M. Müller, K. Katsov, M. Schick  Biophysical Journal 
Volume 94, Issue 11, Pages (June 2008)
Volume 101, Issue 9, Pages (November 2011)
Miscibility Critical Pressures in Monolayers of Ternary Lipid Mixtures
Jesús Sot, Luis A. Bagatolli, Félix M. Goñi, Alicia Alonso 
Ion-Induced Defect Permeation of Lipid Membranes
Coarsening Dynamics of Domains in Lipid Membranes
Lipid Asymmetry in DLPC/DSPC-Supported Lipid Bilayers: A Combined AFM and Fluorescence Microscopy Study  Wan-Chen Lin, Craig D. Blanchette, Timothy V.
Volume 99, Issue 11, Pages (December 2010)
Volume 103, Issue 11, Pages (December 2012)
Juan M. Vanegas, Maria F. Contreras, Roland Faller, Marjorie L. Longo 
Comparing Experimental and Simulated Pressure-Area Isotherms for DPPC
Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures
Volume 99, Issue 11, Pages (December 2010)
Volume 114, Issue 1, Pages (January 2018)
William J. Galush, Jeffrey A. Nye, Jay T. Groves  Biophysical Journal 
Volume 102, Issue 9, Pages (May 2012)
Volume 99, Issue 1, Pages (July 2010)
Volume 90, Issue 4, Pages (February 2006)
Volume 110, Issue 12, Pages (June 2016)
Aymeric Chorlay, Abdou Rachid Thiam  Biophysical Journal 
Presentation transcript:

Volume 112, Issue 7, Pages 1431-1443 (April 2017) Line Tension Controls Liquid-Disordered + Liquid-Ordered Domain Size Transition in Lipid Bilayers  Rebecca D. Usery, Thais A. Enoki, Sanjula P. Wickramasinghe, Michael D. Weiner, Wen-Chyan Tsai, Mary B. Kim, Shu Wang, Thomas L. Torng, David G. Ackerman, Frederick A. Heberle, John Katsaras, Gerald W. Feigenson  Biophysical Journal  Volume 112, Issue 7, Pages 1431-1443 (April 2017) DOI: 10.1016/j.bpj.2017.02.033 Copyright © 2017 Biophysical Society Terms and Conditions

Figure 1 Phase diagrams and phase morphologies in four-component mixtures. (A) Ternary phase diagram of DSPC/DOPC/Chol at 23°C (9). (B) Partial quaternary (tetrahedral) phase diagram of DSPC/DOPC/POPC/chol showing the Ld + Lo regions (shaded) of DSPC/DOPC/chol (near face) and DSPC/POPC/chol (far-right face) (9). Sample series referred to in the main text as ρ-trajectories connect a composition on the DSPC/POPC/chol face (ρ = 0, nanodomains) to a composition on the DSPC/DOPC/chol face (ρ = 1, macrodomains), where ρ represents the ratio of DOPC to total low-Tm lipid (i.e., DOPC + POPC). (C) Phase morphologies observed in GUVs along a ρ-trajectory in DSPC/(DOPC+POPC)/chol = 0.39/0.39/0.22: uniform (ρ < 0.2); modulated (0.2 ≤ ρ < 0.4); macroscopic round domains (ρ ≥ 0.4). Images were collected with a confocal microscope using 0.02 mol % C12:0 DiI. Scale bars, 10 μm. Biophysical Journal 2017 112, 1431-1443DOI: (10.1016/j.bpj.2017.02.033) Copyright © 2017 Biophysical Society Terms and Conditions

Figure 2 (A–L) Morphology of coexisting Ld + Lo domains changes with ρ. In GUVs prepared from four-component lipid mixtures, phase domain morphology changes from uniform (i.e., no visible domains), to modulated patterns, to macroscopic round domains as ρ is varied from 0 to 1. The fraction of GUVs showing modulated domain morphology is plotted as a function of ρ for different four-component lipid mixtures (dashed lines). (Solid line) Fraction of GUVs showing modulated phases + the fraction of GUVs showing macroscopic domains. (Asterisk) Midpoint of the domain size transition, denoted as ρ∗. Data for (F), (G), and (K) originally appeared in Heberle et al. (54), Goh et al. (13), and Konyakhina and Feigenson (55), respectively. Lipid compositions of GUVs are described in Table S1. Biophysical Journal 2017 112, 1431-1443DOI: (10.1016/j.bpj.2017.02.033) Copyright © 2017 Biophysical Society Terms and Conditions

Figure 3 Line tension increases in a ρ-trajectory. Line tension for six four-component lipid mixtures measured with GUV flicker spectroscopy. In all mixtures, visible domains first appear at ∼0.3 pN (dashed line), while domains become fully rounded at ∼1.1 pN (dotted line). Line tension was measured by fluctuation analysis of either an Lo or Ld domain using wide-field fluorescence microscopy at 23°C with fluorescent dye C12:0-DiI at 0.2 mol %. Error bars correspond to SE. Biophysical Journal 2017 112, 1431-1443DOI: (10.1016/j.bpj.2017.02.033) Copyright © 2017 Biophysical Society Terms and Conditions

Figure 4 Lo and Ld bending moduli do not show abrupt transitions in a ρ-trajectory. The bending modulus of (A) Ld phase (κLd) and (B) Lo phase (κLo) measured at different ρ-values in DSPC/DOPC/POPC/chol. As POPC is replaced by DOPC (i.e., increasing ρ), κLd gradually decreases, while κLo gradually increases. Within the ρ-window where domain size exhibits an abrupt increase (shaded region), changes in bending rigidity of either phase are <10%. Error bars correspond to SE (n > 5). Biophysical Journal 2017 112, 1431-1443DOI: (10.1016/j.bpj.2017.02.033) Copyright © 2017 Biophysical Society Terms and Conditions

Figure 5 Probe partition coefficients do not show abrupt transitions along a ρ-trajectory. Partition coefficient Kp between Ld and Lo phases for: (A) the fluorescence probe BODIPY-PC in bSM/DOPC/POPC/chol, and (B) the spin-label probe 16PC in DSPC/DOPC/POPC/chol. Within the ρ-window where domain size exhibits an abrupt increase (shaded regions), changes in Kp are gradual. Also shown in (A) are: (upper-left inset) the fluorescence intensity (symbols) and fit to a partitioning model (solid line) of Bodipy-PC along a thermodynamic tieline at ρ = 0, and (lower-right inset) fluorescence micrograph revealing the partitioning of Bodipy-PC in a GUV at ρ = 0.9 (scale bars, 5 μm, temperature 23°C). For details, see the Supporting Material. Biophysical Journal 2017 112, 1431-1443DOI: (10.1016/j.bpj.2017.02.033) Copyright © 2017 Biophysical Society Terms and Conditions

Figure 6 A model of competing interactions describes the domain size transition. (A) Energetic contributions from domain interface (line tension × perimeter) and dipole-dipole repulsion as a function of domain radius, calculated for a line tension value of 0.25 pN. (B) The sum of interfacial and electrostatic energy in (A) exhibits a minimum value at domain radius Rd∗. (C) Rd∗ plotted versus line tension reveals an abrupt domain size transition for model parameters ε = 8, h = 3.0 nm, AL = 60 Å2, and Δϕ = 0.1 V (solid line) or 0.2 V (dot-dashed line). A description of model parameters is found in the Supporting Material. Biophysical Journal 2017 112, 1431-1443DOI: (10.1016/j.bpj.2017.02.033) Copyright © 2017 Biophysical Society Terms and Conditions

Figure 7 SANS reveals domain size in the nanoscopic regime along ρ. Domain radius obtained from Monte Carlo modeling of SANS data for LUVs composed of DSPC/DOPC/POPC/chol. Within the nanoscopic regime at ρ < 0.2, domain radius increases gradually from 6 to 12 nm for LUVs of either 50 nm diameter (triangles) or 100 nm diameter (circles). The asterisk marks ρ∗, where 50% of the GUVs were observed with modulated phases or with macrodomains. Biophysical Journal 2017 112, 1431-1443DOI: (10.1016/j.bpj.2017.02.033) Copyright © 2017 Biophysical Society Terms and Conditions

Figure 8 Simulated nanodomains have a complex morphology. A top-down view of a nanodomain in a coarse-grained MD simulation of DPPC/DUPC/PUPC/chol at ρ = 0.65 reveals a complex, noncircular domain shape. Voronoi cells of lipids in the Lo phase are shown in black, while those in the Ld phase are shown in white. The snapshot was obtained after 3.6 μs of simulation at a temperature of 22°C. A dashed gray circle of 25 nm diameter is shown as a reference. Biophysical Journal 2017 112, 1431-1443DOI: (10.1016/j.bpj.2017.02.033) Copyright © 2017 Biophysical Society Terms and Conditions