G. Wei, V.S. Morozov, Fanglei Lin MEIC R&D Meeting, JLab, Oct 27, 2015

Slides:



Advertisements
Similar presentations
Author - Title (Footer)1 LINEAR LATTICE ERRORS AT THE ESRF: MODELING AND CORRECTION A. Franchi, L. Farvacque, T. Perron.
Advertisements

Alignment and Beam Stability
The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme.
Accelerator Physics Issues Shekhar Mishra Sept 17-19, 1996 Main Injector DOE Review.
Y. Ohnishi / KEK KEKB-LER for ILC Damping Ring Study Simulation of low emittance lattice includes machine errors and optics corrections. Y. Ohnishi / KEK.
Orbit Control For Diamond Light Source Ian Martin Joint Accelerator Workshop Rutherford Appleton Laboratory28 th -29 th April 2004.
Emittance Growth from Elliptical Beams and Offset Collision at LHC and LRBB at RHIC Ji Qiang US LARP Workshop, Berkeley, April 26-28, 2006.
Dynamic Aperture Study for the Ion Ring Lattice Options Min-Huey Wang, Yuri Nosochkov MEIC Collaboration Meeting Fall 2015 Jefferson Lab, Newport News,
Vertical Emittance Tuning at the Australian Synchrotron Light Source Rohan Dowd Presented by Eugene Tan.
Analysis of Multipole and Position Tolerances for the ATF2 Final Focus Line James Jones ASTeC, Daresbury Laboratory.
Emittance Tuning Simulations in the ILC Damping Rings James Jones ASTeC, Daresbury Laboratory.
Compensation of Detector Solenoid G.H. Wei, V.S. Morozov, Fanglei Lin JLEIC Collaboration Meeting Spring, 2016.
1 BROOKHAVEN SCIENCE ASSOCIATES 1 NSLS-II Lattice Design 1.TBA-24 Lattice Design - Advantages and shortcomings Low emittance -> high chromaticity -> small.
Field Quality Specifications for Triplet Quadrupoles of the LHC Lattice v.3.01 Option 4444 and Collimation Study Yunhai Cai Y. Jiao, Y. Nosochkov, M-H.
First evaluation of Dynamic Aperture at injection for FCC-hh
Orbit Control For Diamond Light Source
JLEIC simulations status April 3rd, 2017
Optimization of Triplet Field Quality in Collision
Large Booster and Collider Ring
Non-linear Beam Dynamics Studies for JLEIC Electron Collider Ring
First Look at Nonlinear Dynamics in the Electron Collider Ring
Optics Development for HE-LHC
Electron collider ring Chromaticity Compensation and dynamic aperture
3rd ATF2 Project Meeting, December 18-20, 2006
Nonlinear Dynamics and Error Study of the MEIC Ion Collider Ring
Error and Multipole Sensitivity Study for the Ion Collider Ring
Optics Measurements in the PSB
IR Lattice with Detector Solenoid
Ion Collider Ring Chromatic Compensation and Dynamic Aperture
Linear beam dynamics simulations for XFEL beam distribution system
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
Multipole Limit Survey of FFQ and Large-beta Dipole
Progress on Non-linear Beam Dynamic Study
Feasibility of Reusing PEP-II Hardware for MEIC Electron Ring
Fanglei Lin, Andrew Hutton, Vasiliy S. Morozov, Yuhong Zhang
Update on MEIC Nonlinear Dynamics Work
The Feasibility of Using RHIC Magnets for MEIC and Cost Impact
Ion Collider Ring Using Superferric Magnets
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Alternative Ion Injector Design
First Look at Error Sensitivity in MEIC
Fanglei Lin, Yuri Nosochkov Vasiliy Morozov, Yuhong Zhang, Guohui Wei
Update on JLEIC Electron Ring Design
Multipole Limit Survey of FFQ and Large-beta Dipole
G. Wei, V.S. Morozov, Fanglei Lin
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov, M-H. Wang (SLAC)
Fanglei Lin MEIC R&D Meeting, JLab, July 16, 2015
Compensation of Detector Solenoids
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov (SLAC), M-H. Wang
Progress Update on the Electron Polarization Study in the JLEIC
Multipole Limit Survey of Large-beta Dipoles
Integration of Detector Solenoid into the JLEIC ion collider ring
Basic Error & Multipole Error for MEIC Ion Ring
Discussions on DA with tune scan
First results of proton spin tracking in a figure-8 ring
MEIC Alternative Design Part V
Status of IR / Nonlinear Dynamics Studies
Possibility of MEIC Arc Cell Using PEP-II Dipole
JLEIC Electron Ring Nonlinear Dynamics Work Plan
Upgrade on Compensation of Detector Solenoid effects
Arc FODO Cell Inventory
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
MEIC R&D Meeting, JLab, August 20, 2014
Summary of JLEIC Electron Ring Nonlinear Dynamics Studies
Integration of Detector Solenoids
Summary and Plan for Electron Polarization Study in the JLEIC
DYNAMIC APERTURE OF JLEIC ELECTRON COLLIDER
A TME-like Lattice for DA Studies
Error Sensitivity in MEIC
Update on DA Studies for a TME-like Lattice
Presentation transcript:

G. Wei, V.S. Morozov, Fanglei Lin MEIC R&D Meeting, JLab, Oct 27, 2015 Dynamic Aperture with Realistic Multipole error of Super-Ferric Dipole for MEIC Ion Collider Ring G. Wei, V.S. Morozov, Fanglei Lin MEIC R&D Meeting, JLab, Oct 27, 2015 F. Lin

Contents Error types Purpose of error study Misalignment, strength error and correction Multipole error of Super-Ferric Dipole Dynamic Aperture Study with Multipole error of Super-Ferric Dipole Summary & Questions

Error types Magnets: Super-Ferric dipole, Quads, Sextupole, corrector static errors : independent on time Misalignment, strength error of magnets; offset of BPM Multipole error of magnets (systematic error & random error) dynamic errors: dependent on time Noise signal of BPM Field jitter of magnets

Purpose of error study static errors : independent on time Misalignment, strength error of magnets; Multipoles of magnets (systematic & random error) Give requirement on misalignment Give requirement on multipole error of magnets Get influence to dynamic aperture, Ext: IP dynamic errors: dependent on time Noise signal of BPM Field jitter of magnets Give requirement on BPM noise and magnet jitter

Lattice of -I Scheme for Error Study From Yuri Nosochkov & Ming-Huey Wang Δp/p=0 Δp/p= 0.3% Δp/p=-0.3%

Misalignment, strength error &correction Suggested by Uli Wienends: 3 times larger   Dipole Quadrupole Sextupole BPM(noise) Corrector x misalignment(mm) 0.3 0.3, FFQ0.03 0.02 - y misalignment(mm) x-y rotation(mrad) 0.3, FFQ0.05 s misalignment(mm) Strength error(%) 0.1 0.2, FFQ0.03 0.2 0.01

Misalignment, strength error &correction Closed orbit correction Beta-beat correction Tune correction Chromaticity correction Decoupling

Closed Orbit Distortion and correction +10-4 -10-4 +2 mm -2 mm

Closed Orbit Distortion and correction +10-4 -10-4 5*10-6 5*10-6

Tune correction Tune correction (Tune measurement error < 0.001) Tune error : < 0.1 % PC data Beam Time Gene-rator Kicker Pulse Mode Pulse

Beta-beat correction Beta-beat correction: beta measurement Fermilab Recycler Ring, Mar.2000 LHC: 2008; J-PARC: 2008

Beta-beat correction Beta-beat correction: beta measurement Beta error at IP & Beta > 500 : < 1 % Beta error at Beta < 500 : < 5 %

Beta-beat correction Beta-beat correction: Matrix corrction (-I or SVD method) This moment, I just use simple matching.

Chromaticity correction Linear Chromaticity (+1, +1) W function at IP = (0, 0)

Decoupling We can calculate the off-diagonal terms of The optimum positions for four coupling correctors are at .

Dynamic Aperture after Correction Without error After Correction Δp/p=0 Δp/p= 0.3% Δp/p=-0.3% All seeds: Δp/p=0

Multipoles of Super-Ferric dipole

Multipoles of Super-Ferric dipole ΔBn is the field due to order of n B0 is the main dipole field Multipole errors of PEP-II HER dipole at radius 30 mm (unit: 10^-4) multipole type ∆ 𝐵 1 𝐵 0 ∆ 𝐵 2 𝐵 0 ∆ 𝐵 3 𝐵 0 ∆ 𝐵 4 𝐵 0 ∆ 𝐵 5 𝐵 0 ∆ 𝐵 6 𝐵 0 ∆ 𝐵 7 𝐵 0 ∆ 𝐵 8 𝐵 0 ∆ 𝐵 9 𝐵 0 ∆ 𝐵 10 𝐵 0 systematic -0.39 -0.1   Random -0.41 0.32 0.64 0.82 Multipole errors of super-ferric dipole at radius 30 mm (unit: 10^-4) -0.227 -1.209 0.425 4.304 5.422 4.170 -7.931 -10.515 0.335 1.545 Multipole errors of super-ferric dipole at radius 20 mm (unit: 10^-4) -0.151 -0.537 0.126 0.850 0.714 0.366 -0.464 -0.410 0.009 0.027

Multipoles of Super-Ferric dipole 100 GeV Without error Multipole all Δp/p=0 Δp/p= 0.3% Δp/p=-0.3% Multipole 1 Multipole 2 Multipole 3

Multipoles of Super-Ferric dipole 100 GeV 10 sigma H & V (1.8, 0.36) e-4 Multipole 7 Multipole 3-8 Multipole 8

Multipoles of Super-Ferric dipole 60 GeV Without error Multipole all Δp/p=0 Δp/p= 0.3% Δp/p=-0.3% Multipole 1 Multipole 2 Multipole 3

Multipoles of Super-Ferric dipole 60 GeV 10 sigma H & V (2.3, 0.46) e-4 Multipole 7 Multipole 3-8 Multipole 8

Multipoles of Super-Ferric dipole ΔBn is the field due to order of n Bn is the main field Multipole errors of super-ferric dipole at radius 30 mm (unit: 10^-4) multipole type ∆ 𝐵 1 𝐵 0 ∆ 𝐵 2 𝐵 0 ∆ 𝐵 3 𝐵 0 ∆ 𝐵 4 𝐵 0 ∆ 𝐵 5 𝐵 0 ∆ 𝐵 6 𝐵 0 ∆ 𝐵 7 𝐵 0 ∆ 𝐵 8 𝐵 0 ∆ 𝐵 9 𝐵 0 ∆ 𝐵 10 𝐵 0 systematic -0.227 -1.209 0.425 4.304 5.422 4.170 -7.931 -10.515 0.335 1.545 Random Multipole errors of PEP-II HER quadrupole at radius 44.9 mm (unit: 10^-4) ∆ 𝐵 2 𝐵 1 ∆ 𝐵 3 𝐵 1 ∆ 𝐵 4 𝐵 1 ∆ 𝐵 5 𝐵 1 ∆ 𝐵 9 𝐵 1 ∆ 𝐵 13 𝐵 1 10.3 5.6 4.8 23.7 -31 -26.3 3.2 4.5 1.9 1.7 1.8 0.705 Multipole errors of PEP-II HER sextupole at radius 56.52 mm (unit: 10^-4) ∆ 𝐵 4 𝐵 2 ∆ 𝐵 6 𝐵 2 ∆ 𝐵 8 𝐵 2 ∆ 𝐵 14 𝐵 2   −145 −130 220  10.5

multipoles of Super-Ferric dipole SC + dp/p SC + FFQ + Q FFQ + Q SC + FFQ

Summary Magnets with larger misalignment suggested by Uli Wienands has been studied. Multipole error would be the main reason to cause dynamic aperture shrinking With multipole data of super-ferric dipole supported by Akhdiyor I Sattarov, James Gerity and Peter McIntyre, 10 sigma H & V can be attained for the final dynamic aperture of 100 GeV and 60 GeV proton By using multipole error of PEP-II HER quadrupole as multipole error of FFQ, Larger shrinking will occurred for the dynamic aperture

multipoles of Super-Ferric dipole SC + dp/p SC + FFQ + Q FFQ + Q SC + FFQ

Dynamic Aperture requirement in different energy σx:10-6 σy:10-6

multipoles of Super-Ferric dipole Δp/p=0 Δp/p= 0.3% Δp/p=-0.3% 25.22,23.16