by Apoorv Shanker, Chen Li, Gun-Ho Kim, David Gidley, Kevin P

Slides:



Advertisements
Similar presentations
Fig. 4 3D reconfiguration of liquid metals for electronics.
Advertisements

Fig. 1 Characterization of the device structure.
Fig. 1 High-resolution printing of liquid metals.
Fig. 3 The electrical contact of direct-printed and reconfigured liquid metals. The electrical contact of direct-printed and reconfigured liquid metals.
Fig. 2 Global production, use, and fate of polymer resins, synthetic fibers, and additives (1950 to 2015; in million metric tons). Global production, use,
Fig. 3 Calculated IR spectra for the oxo complex and chain complex.
Fig. 3 Vibrational spectra of human bones from the Copper Age (Scoglietto cave, Italy). Vibrational spectra of human bones from the Copper Age (Scoglietto.
Vibrational spectra of medieval human bones (Leopoli-Cencelle, Italy)
Fig. 1 Precursor suspensions for spin coating and the obtained monolayer films. Precursor suspensions for spin coating and the obtained monolayer films.
Fig. 5 Thermal conductivity of n-type ZrCoBi-based half-Heuslers.
Fig. 1 Map of water stress and shale plays.
Fig. 1 Crystal and electronic structure of WTe2.
Fig. 2 Fluidic and electrical characteristics of the wireless optofluidic system. Fluidic and electrical characteristics of the wireless optofluidic system.
Fig. 1 Examples of experimental stimuli and behavioral performance.
Fig. 4 Complete separation of water and solute after stable and efficient solar evaporation. Complete separation of water and solute after stable and efficient.
Fig. 4 Morphogenesis in the Ch-CNC host droplets and NP assemblies.
Fig. 4 Resynthesized complex boronic acid derivatives based on different scaffolds on a millimole scale and corresponding yields. Resynthesized complex.
Fig. 6 Comparison of properties of water models.
Fig. 2 Ferroelectric domains resolved in WTe2 single crystals.
Fig. 1 Product lifetime distributions for the eight industrial use sectors plotted as log-normal probability distribution functions (PDF). Product lifetime.
FTIR-ATR spectra of Neolithic faunal bones (Mora Cavorso cave, Italy)
Fig. 3 Phase-contrast imaging.
Fig. 1 Distribution of total and fake news shares.
Fig. 1 Structure of L10-IrMn.
Fig. 1 Schematic illustration and atomic-scale rendering of a silica AFM tip sliding up and down a single-layer graphene step edge on an atomically flat.
Molecular engineered conjugated polymer with high thermal conductivity
Fig. 6 WPS imaging of different chemical components in living cells.
Fig. 3 Load dependence of friction force and corresponding COF.
Fig. 2 Dissolution mechanism of nylons in the TFA:acetone mixture.
Fig. 1 Histograms of the number of first messages received by men and women in each of our four cities. Histograms of the number of first messages received.
Fig. 5 Schematic phase diagrams of Ising spin systems and Mott transition systems. Schematic phase diagrams of Ising spin systems and Mott transition systems.
Characteristics of ultrathin single-crystalline semiconductor films
oCVD synthesis process, molecular structure, and film morphology
Fig. 4 OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with different pH. OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with.
Fig. 1 Average contribution (million metric tons) of seafood-producing sectors, 2009–2014. Average contribution (million metric tons) of seafood-producing.
Fig. 1 Cross-sectional images of He-implanted V/Cu/V samples.
Fig. 1 Structure and absorption spectra of the P
Fig. 1 Microstructure of bulk UFG/nanocrystalline Cu-containing distributed WC nanoparticles. Microstructure of bulk UFG/nanocrystalline Cu-containing.
Fig. 3 Production of protein and Fe(II) at the end of growth correlated with increasing concentrations of ferrihydrite in the media that contained 0.2.
Fig. 5 The different fractions of the rates of energy flow in the oscillating thermal circuit for the experiment with L = 58.5 H shown in Fig. 4A. The.
Fig. 2 Comparison of laser-chemical tailored Ni(TPA/TEG) and Ni(TPA) composites. Comparison of laser-chemical tailored Ni(TPA/TEG) and Ni(TPA) composites.
Fig. 4 Schematic diagram for achieving URTP in G-doped PVA films and irradiation time-dependent 1H NMR spectra of the PVA-100-3mg film. Schematic diagram.
Fig. 5 Comparison of the liquid products generated from photocatalytic CO2 reduction reactions (CO2RR) and CO reduction reactions (CORR) on two catalysts.
Fig. 1 Distribution of forest tree mycorrhizal types and their associated factors in forests of the contiguous United States. Distribution of forest tree.
Fig. 4 BS-SEM images, ternary diagrams, and phase maps for the text and reverse sides of the TS. BS-SEM images, ternary diagrams, and phase maps for the.
Fig. 2 Solution properties of S-PEDOT.
Fig. 1 Location of the Jirzankal Cemetery.
Fig. 4 Comparison of fracture toughness by three-point bending test.
Fig. 4 MFEP calculation. MFEP calculation. (A) MFEPs between defective (dislocation dipole) and defect-free lamellar structures in symmetric BCP thin film.
Fig. 1 Structural and electrical properties of Bi2Se3/BaFe12O19.
Long-range structural order control of SS-annealed cylinder patterns
Fig. 2 Mean field results. Mean field results. (A) Solutions P(x) to Eq. 4 for a range of T and wc = (B) Modulus ∣pk∣ of order parameters versus.
Fig. 3 Comparisons of NDVI trends over the globally vegetated areas from 1982 to Comparisons of NDVI trends over the globally vegetated areas from.
Fig. 2 Particles detected in snow samples collected at different locations from Europe to the Arctic. Particles detected in snow samples collected at different.
Fig. 4 Spatial mapping of the distribution and intensity of industrial fishing catch. Spatial mapping of the distribution and intensity of industrial fishing.
Fig. 3 Device architecture, photovoltaic performance, and operational stability of 3D/2D bilayer PSCs. Device architecture, photovoltaic performance, and.
Fig. 3 Structural variation under various dc voltages applied on the same one single crystal of FJU-23-H2O along the c axis. Structural variation under.
Fig. 4 Single-particle contact angle measurements.
Fig. 3 Supraballs and films assembled from binary 219/217nm SPs/SMPs.
Fig. 2 Supraballs and films from binary SPs.
Fig. 4 Behavior of resistance peak near density nm = 5.
Fig. 1 Structure and basic properties of EuTiO3 (ETO) films.
Fig. 2 Comparison between the different reflective metasurface proposals when θi = 0° and θr = 70°. Comparison between the different reflective metasurface.
Fig. 1 Design principle and SEM characterization of super-origami DNA nanostructures with n-tuples. Design principle and SEM characterization of super-origami.
Fig. 4 Analysis of charge storage mechanism in ZnxCo1−xO NRs.
Fig. 1 Architected materials fabrication by projection microstereolithography–based additive manufacturing using poly(ethylene glycol) diacrylate resin.
Fig. 3 Rubbery strain, pressure, and temperature sensors.
Fig. 3 Supercurrents in various conductance plateau regions.
Fig. 3 Switchable adhesion influenced by structural design and object conductivity. Switchable adhesion influenced by structural design and object conductivity.
Fig. 3 Calculated electronic structure of ZrCoBi.
Presentation transcript:

High thermal conductivity in electrostatically engineered amorphous polymers by Apoorv Shanker, Chen Li, Gun-Ho Kim, David Gidley, Kevin P. Pipe, and Jinsang Kim Science Volume 3(7):e1700342 July 28, 2017 Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Fig. 1 High thermal conductivity in polyelectrolyte thin films via controlled ionization. High thermal conductivity in polyelectrolyte thin films via controlled ionization. (A) Illustrations of chain conformation and packing in spin-cast polymer films: coiled unionized polyelectrolyte (left) and extended ionized polyelectrolyte (right). The zoomed-in images show chain conformation at the molecular level. (B) Cross-plane thermal conductivity of a weak polyelectrolyte, PAA [molecular weight (MW), 100,000], and a nonionizable water-soluble polymer, PVP (MW, 40,000), thin films spin-cast from polymer solutions of different pH. Error bars were calculated on the basis of uncertainties in film thickness, temperature coefficient of electrical resistance for the heater, and heater width. Chemical structures of the polymers and ionization reaction for PAA are also shown. (C) Fourier transform infrared (FTIR) spectra of PAA films spin-cast from solutions of different pH. (D) Fraction of ionized carboxylic acid groups (α) as a function of solution pH: calculated from the FTIR spectra and by applying charge balance on PAA solutions. Apoorv Shanker et al. Sci Adv 2017;3:e1700342 Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Fig. 2 Effects of PAA ionization and their contributions toward enhancement in κ. Effects of PAA ionization and their contributions toward enhancement in κ. (A) Relative viscosity, ηr (=ηpolymer/ηwater; ηwater = 10−3 Pa·s), of a 2 wt % solution of PAA and film thickness, df, of spin-cast samples (from 0.5 wt % solution) as a function of pH. (B) Elastic modulus of blade-coated PAA (MW, 450,000) films measured by nanoindentation. The error bar shows SD of measurements at four different points on the film. (C) Contributions from the three ionization-induced effects toward enhancement in thermal conductivity of spin-cast PAA films. κ at different pH is noted above the bars. (D) Thermal conductivities of solvent vapor–annealed PAA films compared to those of as-made samples. PAA films were solvent vapor–annealed at 90°C for 30 min, followed by thermal annealing at 100°C for 15 min. Apoorv Shanker et al. Sci Adv 2017;3:e1700342 Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Fig. 3 Tapping-mode AFM and SEM analyses of PAA films. Tapping-mode AFM and SEM analyses of PAA films. (A) Tapping-mode topography (top) and phase (bottom) images (2 μm × 2 μm) of PAA films spin-cast from solutions of different pH. AFM images have been shifted to zero mean values (that is, “flattened”) for illustration purposes. Nanosized NaOH crystals are only visible in sample with excess amount of NaOH added to the PAA solution. (B) SEM images of the same films analyzed by AFM. NaOH crystals can be seen only when excess NaOH is added, consistent with the AFM data. (C) Measured thermal conductivities, κspin-cast, for spin-cast films greatly exceed the Maxwell model–predicted values, indicating that enhancement is not primarily due to a high-κ filler effect. Apoorv Shanker et al. Sci Adv 2017;3:e1700342 Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Fig. 4 Comparison of thermal conductivities of chain-extended PAA and polymer-salt composites. Comparison of thermal conductivities of chain-extended PAA and polymer-salt composites. (A) Thermal conductivity of thin films of water-soluble polymers with added inorganic salts. Chain-extended PAA refers to PAA films spin-cast from solutions at different pH. Salts added in PAA/NaCl and PVP/NaOH samples do not react with respective polymers and act as high-κ fillers. The inset shows data for chain-extended PAA, with abscissa on log scale. (B) Thermal conductivity of thick PAA films blade-coated from solutions at different pH. The color map shows film thicknesses in micrometers. The error in κ was less than 4% for all samples and is not shown. Apoorv Shanker et al. Sci Adv 2017;3:e1700342 Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).