Christa Lese Martin, Andrew Wong, Alyssa Gross, June Chung, Judy A

Slides:



Advertisements
Similar presentations
Lisa Edelmann, Raj K. Pandita, Bernice E. Morrow 
Advertisements

Frequency of Nonallelic Homologous Recombination Is Correlated with Length of Homology: Evidence that Ectopic Synapsis Precedes Ectopic Crossing-Over 
Tracy I. George, Joanna E. Wrede, Charles D. Bangs, Athena M
Haley J. Abel, Hussam Al-Kateb, Catherine E. Cottrell, Andrew J
Follicular lymphoma with a novel t(14;18) breakpoint involving the immunoglobulin heavy chain switch mu region indicates an origin from germinal center.
Novel PMS2 Pseudogenes Can Conceal Recessive Mutations Causing a Distinctive Childhood Cancer Syndrome  Michel De Vos, Bruce E. Hayward, Susan Picton,
A Cascade of Complex Subtelomeric Duplications during the Evolution of the Hominoid and Old World Monkey Genomes  Michel van Geel, Evan E. Eichler, Amy.
Simple Detection of Telomere Fusions in Pancreatic Cancer, Intraductal Papillary Mucinous Neoplasm, and Pancreatic Cyst Fluid  Tatsuo Hata, Marco Dal.
Resolving the Breakpoints of the 17q21
Der(22) Syndrome and Velo-Cardio-Facial Syndrome/DiGeorge Syndrome Share a 1.5- Mb Region of Overlap on Chromosome 22q11  B. Funke, L. Edelmann, N. McCain,
A Member of a Gene Family on Xp22
Reciprocal Crossovers and a Positional Preference for Strand Exchange in Recombination Events Resulting in Deletion or Duplication of Chromosome 17p11.2 
Sequencing of t(2;7) Translocations Reveals a Consistent Breakpoint Linking CDK6 to the IGK Locus in Indolent B-Cell Neoplasia  Edward P.K. Parker, Reiner.
High-Resolution Mapping of Genotype-Phenotype Relationships in Cri du Chat Syndrome Using Array Comparative Genomic Hybridization  Xiaoxiao Zhang, Antoine.
Clustered 11q23 and 22q11 Breakpoints and 3:1 Meiotic Malsegregation in Multiple Unrelated t(11;22) Families  Tamim H. Shaikh, Marcia L. Budarf, Livija.
Recombination between Palindromes P5 and P1 on the Human Y Chromosome Causes Massive Deletions and Spermatogenic Failure  Sjoerd Repping, Helen Skaletsky,
Chromosome Breakage in the Prader-Willi and Angelman Syndromes Involves Recombination between Large, Transcribed Repeats at Proximal and Distal Breakpoints 
Model of segmental duplication Acceptor regions of the genome acquire segments of genomic material that range from 1–200 kb from disparate regions.
Heterozygous Submicroscopic Inversions Involving Olfactory Receptor–Gene Clusters Mediate the Recurrent t(4;8)(p16;p23) Translocation  Sabrina Giglio,
The SPCH1 Region on Human 7q31: Genomic Characterization of the Critical Interval and Localization of Translocations Associated with Speech and Language.
Genomic Rearrangements Resulting in PLP1 Deletion Occur by Nonhomologous End Joining and Cause Different Dysmyelinating Phenotypes in Males and Females 
Molecular Characterization and Gene Content of Breakpoint Boundaries in Patients with Neurofibromatosis Type 1 with 17q11.2 Microdeletions  Dieter E.
Molecular Cytogenetic Evidence for a Common Breakpoint in the Largest Inverted Duplications of Chromosome 15  A.E. Wandstrat, J. Leana-Cox, L. Jenkins,
A Multicolor FISH Assay Does Not Detect DUP25 in Control Individuals or in Reported Positive Control Cells  Yanina Weiland, Jürgen Kraus, Michael R. Speicher 
Human Epidermal Differentiation Complex in a Single 2
Barbara R. Migeon, Catherine H. Lee, Ashis K
Myotonic Dystrophy Type 2: Human Founder Haplotype and Evolutionary Conservation of the Repeat Tract  Christina L. Liquori, Yoshio Ikeda, Marcy Weatherspoon,
Volume 138, Issue 5, Pages (September 2009)
Evidence for Widespread Reticulate Evolution within Human Duplicons
Structural Analysis of Insulin Minisatellite Alleles Reveals Unusually Large Differences in Diversity between Africans and Non-Africans  John D.H. Stead,
Hemizygosity at the NCF1 Gene in Patients with Williams-Beuren Syndrome Decreases Their Risk of Hypertension  Miguel Del Campo, Anna Antonell, Luis F.
Volume 10, Issue 8, Pages (March 2015)
The β-Globin Recombinational Hotspot Reduces the Effects of Strong Selection around HbC, a Recently Arisen Mutation Providing Resistance to Malaria  Elizabeth.
Sequence and Haplotype Analysis Supports HLA-C as the Psoriasis Susceptibility 1 Gene  Rajan P. Nair, Philip E. Stuart, Ioana Nistor, Ravi Hiremagalore,
Recurrent 10q22-q23 Deletions: A Genomic Disorder on 10q Associated with Cognitive and Behavioral Abnormalities  Jorune Balciuniene, Ningping Feng, Kelly.
Volume 11, Issue 5, Pages (May 2003)
Renata C. Gallagher, Birgit Pils, Mohammed Albalwi, Uta Francke 
Olfactory Receptor–Gene Clusters, Genomic-Inversion Polymorphisms, and Common Chromosome Rearrangements  Sabrina Giglio, Karl W. Broman, Naomichi Matsumoto,
Volume 47, Issue 6, Pages (September 2012)
Sex Chromosome Specialization and Degeneration in Mammals
Genomic Technologies and the New Era of Genomic Medicine
Volume 89, Issue 2, Pages (April 1997)
Disruption of Contactin 4 (CNTN4) Results in Developmental Delay and Other Features of 3p Deletion Syndrome  Thomas Fernandez, Thomas Morgan, Nicole Davis,
High-Resolution Molecular Characterization of 15q11-q13 Rearrangements by Array Comparative Genomic Hybridization (Array CGH) with Detection of Gene Dosage 
David C. Page  The American Journal of Human Genetics 
Gene Conversion between the X Chromosome and the Male-Specific Region of the Y Chromosome at a Translocation Hotspot  Zoë H. Rosser, Patricia Balaresque,
Molecular and Fluorescence In Situ Hybridization Characterization of the Breakpoints in 46 Large Supernumerary Marker 15 Chromosomes Reveals an Unexpected.
A DNA Replication Mechanism for Generating Nonrecurrent Rearrangements Associated with Genomic Disorders  Jennifer A. Lee, Claudia M.B. Carvalho, James.
High-Throughput Analysis of Subtelomeric Chromosome Rearrangements by Use of Array-Based Comparative Genomic Hybridization  Joris A. Veltman, Eric F.P.M.
Michael A. Rogers, Hermelita Winter, Christian Wolf, Jürgen Schweizer 
Complex Signatures of Natural Selection at the Duffy Blood Group Locus
Reciprocal Crossovers and a Positional Preference for Strand Exchange in Recombination Events Resulting in Deletion or Duplication of Chromosome 17p11.2 
E.J. Hollox, J.A.L. Armour, J.C.K. Barber 
Complete Haplotype Sequence of the Human Immunoglobulin Heavy-Chain Variable, Diversity, and Joining Genes and Characterization of Allelic and Copy-Number.
Large Clinically Consequential Imbalances Detected at the Breakpoints of Apparently Balanced and Inherited Chromosome Rearrangements  Sarah T. South,
Novel PMS2 Pseudogenes Can Conceal Recessive Mutations Causing a Distinctive Childhood Cancer Syndrome  Michel De Vos, Bruce E. Hayward, Susan Picton,
Characterization and Mutation Analysis of Human LEFTY A and LEFTY B, Homologues of Murine Genes Implicated in Left-Right Axis Development  K. Kosaki,
3q29 Microdeletion Syndrome: Clinical and Molecular Characterization of a New Syndrome  Lionel Willatt, James Cox, John Barber, Elisabet Dachs Cabanas,
The Variant inv(2)(p11.2q13) Is a Genuinely Recurrent Rearrangement but Displays Some Breakpoint Heterogeneity  Ina Fickelscher, Thomas Liehr, Kathryn.
Worldwide Population Analysis of the 4q and 10q Subtelomeres Identifies Only Four Discrete Interchromosomal Sequence Transfers in Human Evolution  Richard.
Der(22) Syndrome and Velo-Cardio-Facial Syndrome/DiGeorge Syndrome Share a 1.5- Mb Region of Overlap on Chromosome 22q11  B. Funke, L. Edelmann, N. McCain,
2012 William Allan Award: Adventures in Cytogenetics1
Identification of TSIX, Encoding an RNA Antisense to Human XIST, Reveals Differences from its Murine Counterpart: Implications for X Inactivation  Barbara.
Volume 21, Issue 23, Pages (December 2011)
A 22q11.2 Deletion That Excludes UFD1L and CDC45L in a Patient with Conotruncal and Craniofacial Defects  Sulagna C. Saitta, James M. McGrath, Holly Mensch,
Molecular Characterization of the Pericentric Inversion That Causes Differences Between Chimpanzee Chromosome 19 and Human Chromosome 17  Hildegard Kehrer-Sawatzki,
Next-Generation Sequencing of Duplication CNVs Reveals that Most Are Tandem and Some Create Fusion Genes at Breakpoints  Scott Newman, Karen E. Hermetz,
The Breakpoint Region of the Most Common Isochromosome, i(17q), in Human Neoplasia Is Characterized by a Complex Genomic Architecture with Large, Palindromic,
Sequence Homology between 4qter and 10qter Loci Facilitates the Instability of Subtelomeric KpnI Repeat Units Implicated in Facioscapulohumeral Muscular.
Bruce Rannala, Jeff P. Reeve  The American Journal of Human Genetics 
Presentation transcript:

The Evolutionary Origin of Human Subtelomeric Homologies—or Where the Ends Begin  Christa Lese Martin, Andrew Wong, Alyssa Gross, June Chung, Judy A. Fantes, David H. Ledbetter  The American Journal of Human Genetics  Volume 70, Issue 4, Pages 972-984 (April 2002) DOI: 10.1086/339768 Copyright © 2002 The American Society of Human Genetics Terms and Conditions

Figure 1 Results of FISH for BAC 136B17 (from human chromosome 4p) on selected members of the primate panel. In human (A), this clone hybridizes to the 4p telomere (large arrows) and to the 1p telomere (small arrows), with the signal intensity being greater on chromosome 4p. Only one hybridization signal (large arrows) is observed for this clone in chimpanzee (B) and macaque (C), both of which correspond to the region orthologous to the human 4p telomere. Similar results were obtained for gorilla, orangutan, and baboon. The American Journal of Human Genetics 2002 70, 972-984DOI: (10.1086/339768) Copyright © 2002 The American Society of Human Genetics Terms and Conditions

Figure 2 Summary of FISH results from seven human genomic clones tested on the primate panel. The evolutionary lineage between the primates tested is depicted above the table; the molecular time scale used is adopted from Kumar and Hedges (1998) and is indicated in millions of years (Myr). For all clones, the chromosomal localization for FISH hybridization is listed by reference to the human ortholog. The hybridization signal was observed at the telomere region of each chromosome, unless otherwise noted. HSA = human; PTR = chimpanzee; GGO = gorilla; PPY = orangutan; OWM = Old World monkeys (macaque and baboon); pericen. = pericentromeric. Clones listed as having “other” hybridization signals indicate that additional hybridization signals were observed that were characterized by number of signals and chromosomal position, as indicated by the following superscripts: 1 = two telomere regions; 2 = one telomere region; 3 = three telomere regions and one interstitial region; and 4 = three telomere regions. The American Journal of Human Genetics 2002 70, 972-984DOI: (10.1086/339768) Copyright © 2002 The American Society of Human Genetics Terms and Conditions

Figure 3 The genomic region of the ancestral telomere fusion site at human 2q13. An idiogram of human chromosome 2 is shown at the top. An expanded physical map is shown below the idiogram, with distance in kilobases from the telomere fusion site (indicated by the “0” point). The BAC contig that covers the region is shown by blackened rectangles under the chromosome. The physical maps of chromosome 22q (from GenBank accession number NT011526; Dunham et al. 1999) and chromosome 9p are shown below the chromosome 2q13 region, for comparison. On the distal side of the fusion site, the subtelomeric region is homologous to the 68-kb subtelomeric region at 22q, as represented by the rectangular pattern in both chromosomes 2 and 22. Two genes, RABL2A and RABL2B, are within these homologous regions on chromosomes 2 and 22, respectively. The “breakpoint” of this homologous region is within the acrosin (ACR) locus on chromosome 22q. The telomeric repeat (TTAGGG)n is represented by a solid gray box at the end of chromosome 22 and chromosome 9. Chromosomes 2 and 9 share ∼189 kb of homologous subtelomeric sequence (indicated by a checker pattern on both chromosomes). The dashed lines at the telomere of chromosome 9 show a 58-kb region that is not covered by any BAC clones. Two genes, FKHL9 and COBW-like (COBWL), as well as a partial PGM5, are duplicated on chromosomes 2 and 9. Proximal to the ancestral subtelomeric domain on chromosome 2, a 100-kb region (marked by diagonal lines) is duplicated at 2q11.2 (marked by the box with diagonal lines above the clones RPCI11-34G16 and RPCI11-440D17). The American Journal of Human Genetics 2002 70, 972-984DOI: (10.1086/339768) Copyright © 2002 The American Society of Human Genetics Terms and Conditions

Figure 4 Hybridization of BAC CITB-HSP-305J7 to various primate metaphase cells. In human (A), strong hybridization is visible at the 9p telomere (large arrows) and the pericentromeric region (small arrows) of chromosome 9. A weaker hybridization signal is present at 2q13 (arrow heads). In chimpanzee (B), hybridization signals are present at the sites orthologous to the human 9p telomere (large arrows), 9p11 (small arrows), and 2q13 (arrow heads). Additional hybridization signals were observed in chimpanzee, to two telomeric regions. In gorilla (C), orangutan (D), and macaque (E), only a single hybridization signal (large arrows) is observed, at an interstitial site that is orthologous to the human 9p telomere. The American Journal of Human Genetics 2002 70, 972-984DOI: (10.1086/339768) Copyright © 2002 The American Society of Human Genetics Terms and Conditions

Figure 5 Proposed sequence of duplication of the 9p subtelomeric sequence. The sequence of changes is indicated by the arrows, proceeding from the top to the bottom of the figure. A, In gorilla (GGO), the human 9p subtelomeric sequence is within an interstitial region of the orthologous chromosome. A pericentric inversion relocated this sequence to the subtelomeric region, as in human (HSA) and chimpanzee (PTR). This 9p subtelomeric region is partially transposed to the centromere of PTR 11 (HSA 9). In human, the copy at the chromosome 9 centromere is further duplicated around the pericentromeric region. B, Duplication of 9p subtelomeric sequence to PTR 12 through a translocation event between the telomeres. Two great ape chromosomes (PTR 12 and PTR 13) fused to form human chromosome 2, which fixed this subtelomeric sequence at an interstitial position. The American Journal of Human Genetics 2002 70, 972-984DOI: (10.1086/339768) Copyright © 2002 The American Society of Human Genetics Terms and Conditions

Figure 6 A dot plot comparison between the homologous subtelomeric sequences of the 2q13 and 22q regions (A) and the distal subtelomeric domains of 22q and 4p (GenBank accession number Z95704) (B). The subtelomeric 22q sequence contains the acrosin gene (ACR; the last two exons are included), a minisatellite repeat 3′AR, a processed pseudogene U2 snRNP specific polypeptide A (U2snRNP), and the RABL2B gene. All exons are highlighted in yellow, and other sequences are in gray. The degenerative (TTAGGG)n repeat sequence, which marks the boundary of the proximal and distal subtelomeric domains, is highlighted in pink. The American Journal of Human Genetics 2002 70, 972-984DOI: (10.1086/339768) Copyright © 2002 The American Society of Human Genetics Terms and Conditions

Figure 7 Hybridization of BAC RPCI11-480C16 to a human metaphase cell. Two hybridization signals are observed on human 2q: one at 2q13 (large arrows) and one at 2q11.2 (small arrows). Hybridization signals are also observed in the chromosome 9 pericentromeric region (arrow heads). The inset shows enlargements of the chromosome 2 and 9 homologs; the capture time for the Spectrum Orange signal was increased, to show the hybridization signal at the 9p telomere (yellow arrow). The American Journal of Human Genetics 2002 70, 972-984DOI: (10.1086/339768) Copyright © 2002 The American Society of Human Genetics Terms and Conditions