AMI Simulation Flow Round 3

Slides:



Advertisements
Similar presentations
Data-Flow Analysis Framework Domain – What kind of solution is the analysis looking for? Ex. Variables have not yet been defined – Algorithm assigns a.
Advertisements

Process Control: Designing Process and Control Systems for Dynamic Performance Chapter 6. Empirical Model Identification Copyright © Thomas Marlin 2013.
Tx_Init_Optimizes Walter Katz Signal Integrity Software, Inc. IBIS-ATM April 1, 2014.
Backchannel, Training and Co-Optimization BIRD Introduction and Flows Walter Katz Signal Integrity Software, Inc. IBIS-ATM May 13, 2014.
Data Structures: A Pseudocode Approach with C 1 Chapter 5 Contd... Objectives Explain the design, use, and operation of a linear list Implement a linear.
5/22/ New AMI API to Resolve Dependent Model Parameter Fangyi Rao, Agilent Technologies.
CSC 160 Computer Programming for Non-Majors Lecture #9: Booleans Prof. Adam M. Wittenstein
Lecture 8 Logical Operations Logical functions & Relational operators © 2007 Daniel Valentine. All rights reserved. Published by Elsevier.
CS 536 Spring Global Optimizations Lecture 23.
1 Lab Session-III CSIT121 Fall 2000 Setting Your Own Paths Setting Project Information Browse Information Generation Data types revisited Enumerated data.
Kalman Filtering Jur van den Berg. Kalman Filtering (Optimal) estimation of the (hidden) state of a linear dynamic process of which we obtain noisy (partial)
CSC 160 Computer Programming for Non-Majors Chapter 4: Conditional Expressions and Functions Prof. Adam M. Wittenstein
Defining Polynomials p 1 (n) is the bound on the length of an input pair p 2 (n) is the bound on the running time of f p 3 (n) is a bound on the number.
Prof. Bodik CS 164 Lecture 16, Fall Global Optimization Lecture 16.
REVIEW 2 Exam History of Computers 1. CPU stands for _______________________. a. Counter productive units b. Central processing unit c. Copper.
Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley C H A P T E R 9 More About Strings.
A New Method For Developing IBIS-AMI Models
 2008 Pearson Education, Inc. All rights reserved JavaScript: Arrays.
INTRODUCTION TO PL/SQL. Class Agenda Introduction Introduction to PL/SQL Declaring PL/SQL Variable Creating the Executable Section Interacting with the.
Linux+ Guide to Linux Certification, Third Edition
C++ Programming: From Problem Analysis to Program Design, Fifth Edition Arrays.
IBIS-ATM Oct. 2012, Slide 1 Mid-Channel Redriver AMI Model and Simulation Mahbubul Bari, Maxim Integrated Fangyi Rao, Agilent Technologies Inc.
© 2006 Pearson Education 1 More Operators  To round out our knowledge of Java operators, let's examine a few more  In particular, we will examine the.
11/1/20151 GC16/3011 Functional Programming Lecture 5 Miranda patterns, functions, recursion and lists.
Visual Basic Programming
Math – What is a Function? 1. 2 input output function.
Backchannel Issues Walter Katz Signal Integrity Software, Inc. IBIS-ATM April 8, 2014.
SONET is used as a WAN. ANSI standard – SONET ITU-T standard – SDH Both are fundamentally similar and compatible.
A Semi-Blind Technique for MIMO Channel Matrix Estimation Aditya Jagannatham and Bhaskar D. Rao The proposed algorithm performs well compared to its training.
Matrices and Systems of Equations
Copyright © Curt Hill Formatting Reals Outputs other than normal.
XP 1 ﴀ New Perspectives on Microsoft Office 2003, Premium Edition Excel Tutorial 2 Microsoft Office Excel 2003 Tutorial 2 – Working With Formulas and Functions.
1 Chapter 3: Getting Started with Tasks 3.1 Introduction to Task Dialogs 3.2 Creating a Listing Report 3.3 Creating a Frequency Report 3.4 Creating a Two-Way.
1.7 Linear Independence. in R n is said to be linearly independent if has only the trivial solution. in R n is said to be linearly dependent if there.
Gist 2.3 John H. Phan MIBLab Summer Workshop June 28th, 2006.
Thinking in Sets and SQL Query Logical Processing.
Perl Chapter 3 Conditional statements. Control Expressions Control expressions – interpreted as T/F (evaluated as strings or numbers) – simple, relational,
Performance of Digital Communications System
An Introduction to Programming with C++ Sixth Edition Chapter 5 The Selection Structure.
Status and Plans for Xilinx Development
Gaussian Elimination Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Gaussian elimination with back-substitution.
1 1.3 © 2016 Pearson Education, Ltd. Linear Equations in Linear Algebra VECTOR EQUATIONS.
Programming Language Concepts
Lecture 3: Logic Bryan Burlingame 06 Sept 2017.
More SQL: Complex Queries,
Parsing Bottom Up CMPS 450 J. Moloney CMPS 450.
The Selection Structure
4.8 Functions and Relations
Chapter 4: Control Structures I (Selection)
Notes Over 2.1 Function {- 3, - 1, 1, 2 } { 0, 2, 5 }
DESICION TABLE Decision tables are precise and compact way to model complicated logic. Decision table is useful when input and output data can be.
Faculty of Computer Science & Information System
Computability and Complexity
Whitening-Rotation Based MIMO Channel Estimation
PL/SQL Declaring Variables.
CS 432: Compiler Construction Lecture 11
Black-Box Testing Techniques III
Topics Basic String Operations String Slicing
Chapter 4: Boolean Expressions, Making Decisions, and Disk Input and Output Prof. Salim Arfaoui.
Linear Algebra Lecture 6.
MIMO (Multiple Input Multiple Output)
STBC in Single Carrier(SC) for IEEE aj (45GHz)
Topics Basic String Operations String Slicing
Unfolding with system identification
Functions What is a function? What are the different ways to represent a function?
Topics Basic String Operations String Slicing
Init should return just equalization of buffer
FEMAS Development - Progress
Terminology and Symbols
FEMAS Development - Progress
Presentation transcript:

AMI Simulation Flow Round 3 Fangyi Rao 10/17/2019

Motivations Handle Init-only Rx properly in both time domain and statistical flows for normal and redriver channels Provide full redriver channel impulse to Rx Init for optimization Eliminate the need for deconvolution 10/17/2019

ℎ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑅𝑥𝑁𝑜𝑛𝐷𝐹𝐸 𝑅𝑥,𝑜𝑢𝑡 Summary No change to Tx Init Augment Rx Init impulse matrix by two columns for total impulse and Rx DFE Rx Init Input Impulse Rx Init Output Impulse Symbol Definition ℎ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑅𝑥,𝑖𝑛 Impulse from upstream Tx input or output, depending on whether Tx has GetWave and whether simulation is in time domain or statistical, to Rx input ℎ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑅𝑥𝑁𝑜𝑛𝐷𝐹𝐸 𝑅𝑥,𝑜𝑢𝑡 Combined impulse of ℎ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑅𝑥,𝑖𝑛 and Rx’s non-DFE portion (including gain and linear EQ) ℎ 𝑡𝑜𝑡𝑎𝑙 𝑅𝑥,𝑖𝑛 Impulse from terminal Tx input to Rx input. Rx Init performs optimization based on this impulse ℎ 𝑡𝑜𝑡𝑎𝑙,𝑅𝑥𝐴𝑙𝑙 𝑅𝑥,𝑜𝑢𝑡 Combined impulse of ℎ 𝑡𝑜𝑡𝑎𝑙 𝑅𝑥,𝑖𝑛 and the entire Rx (including gain , linear EQ and DFE) ℎ 𝑅𝑥𝐷𝐹𝐸 𝑅𝑥,𝑖𝑛 Empty place holder for Rx Init to return DFE impulse ℎ 𝑅𝑥𝐷𝐹𝐸 𝑅𝑥,𝑜𝑢𝑡 Rx DFE. Aligned cursors to ℎ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑅𝑥𝑁𝑜𝑛𝐷𝐹𝐸 𝑅𝑥,𝑜𝑢𝑡 ℎ 𝑥𝑡𝑙𝑘 𝑅𝑥,𝑖𝑛 Impulses from aggressors to Rx input ℎ 𝑥𝑡𝑙𝑘 𝑅𝑥,𝑜𝑢𝑡 Combined impulse of ℎ 𝑥𝑡𝑙𝑘 𝑅𝑥,𝑖𝑛 and Rx’s non-DFE portion (including gain and linear EQ) 10/17/2019

Convention Normal flow: channel doesn’t have repeater Redriver flow: channel has redrivers on left on right input partial impulse to Rx Init output partial impulse of Rx Init on right output Rx DFE impulse of Rx Init on left on right input total impulse to Rx Init output total impulse of Rx Init 10/17/2019

Normal Time Domain Flow: if Tx has GetWave 𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍 𝑹𝒙,𝒊𝒏 = 𝒉 𝑨𝑪 Rx Init input impulses Rx Init output 𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍,𝑹𝒙𝑵𝒐𝒏𝑫𝑭𝑬 𝑹𝒙,𝒐𝒖𝒕  𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍 𝑹𝒙,𝒊𝒏 ∗𝒉 𝑹𝒙𝑵𝒐𝒏𝑫𝑭𝑬 Tx Rx AC Tx AC Rx Non-DFE Rx DFE align cursor 𝒉 𝑹𝒙𝑫𝑭𝑬 𝑹𝒙,𝒐𝒖𝒕 𝒉 𝒕𝒐𝒕𝒂𝒍,𝑹𝒙𝑨𝒍𝒍 𝑹𝒙,𝒐𝒖𝒕 𝒉 𝒕𝒐𝒕𝒂𝒍 𝑹𝒙,𝒊𝒏 =𝑻𝒙 𝑰𝒏𝒊𝒕 𝒐𝒖𝒕𝒑𝒖𝒕 (same as current output impulse) (same as current input impulse) Tx AC Rx Non-DFE Rx DFE Tx Rx AC - Time domain simulation: if Rx has GetWave (same as current flow) Rx output = Tx GetWave output  𝒉 𝑨𝑪  Rx GetWave - Time domain simulation: if Rx is Init-only Rx output = Tx GetWave output  𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍,𝑹𝒙𝑵𝒐𝒏𝑫𝑭𝑬 𝑅𝑥,𝒐𝒖𝒕 + Tx digital input  𝒉 𝑹𝒙𝑫𝑭𝑬 𝑹𝒙,𝒐𝒖𝒕 (note: EDA tool must align Tx digital input and Tx GetWave output) 10/17/2019

Normal Time Domain Flow: if Tx is Init-only 𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍 𝑹𝒙,𝒊𝒏 =𝑻𝒙 𝑰𝒏𝒊𝒕 𝒐𝒖𝒕𝒑𝒖𝒕 𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍,𝑹𝒙𝑵𝒐𝒏𝑫𝑭𝑬 𝑹𝒙,𝒐𝒖𝒕  𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍 𝑹𝒙,𝒊𝒏 ∗𝒉 𝑹𝒙𝑵𝒐𝒏𝑫𝑭𝑬 Rx Init input impulses Rx Init output Tx Rx AC Tx AC Rx Non-DFE Rx DFE align cursor 𝒉 𝑹𝒙𝑫𝑭𝑬 𝑹𝒙,𝒐𝒖𝒕 𝒉 𝒕𝒐𝒕𝒂𝒍 𝑹𝒙,𝒊𝒏 =𝑻𝒙 𝑰𝒏𝒊𝒕 𝒐𝒖𝒕𝒑𝒖𝒕 𝒉 𝒕𝒐𝒕𝒂𝒍,𝑹𝒙𝑨𝒍𝒍 𝑹𝒙,𝒐𝒖𝒕 (same as current output impulse) (same as current input impulse) Tx AC Rx Non-DFE Rx DFE Tx Rx AC - Time domain simulation: if Rx has GetWave (same as current flow) Rx output = Tx digital input  𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍 𝑹𝒙,𝒊𝒏  Rx GetWave - Time domain simulation: if Rx is Init-only (same as current flow) Rx output = Tx digital input  𝒉 𝒕𝒐𝒕𝒂𝒍,𝑹𝒙𝑨𝒍𝒍 𝑹𝒙,𝒐𝒖𝒕 Note: ℎ 𝑡𝑜𝑡𝑎𝑙,𝑅𝑥𝐴𝑙𝑙 𝑅𝑥,𝑜𝑢𝑡 = ℎ 𝑡𝑜𝑡𝑎𝑙,𝑅𝑥𝑁𝑜𝑛𝐷𝐹𝐸 𝑅𝑥,𝑜𝑢𝑡 + ℎ 𝑅𝑥𝐹𝐸 𝑅𝑥,𝑜𝑢𝑡 10/17/2019

Normal Statistical Flow 𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍 𝑹𝒙,𝒊𝒏 =𝑻𝒙 𝑰𝒏𝒊𝒕 𝒐𝒖𝒕𝒑𝒖𝒕 𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍,𝑹𝒙𝑵𝒐𝒏𝑫𝑭𝑬 𝑹𝒙,𝒐𝒖𝒕  𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍 𝑹𝒙,𝒊𝒏 ∗ 𝒉 𝑹𝒙𝑵𝒐𝒏𝑫𝑭𝑬 Rx Init input impulses Rx Init output Tx Rx AC Tx AC Rx Non-DFE Rx DFE align cursor 𝒉 𝑹𝒙𝑫𝑭𝑬 𝑹𝒙,𝒐𝒖𝒕 𝒉 𝒕𝒐𝒕𝒂𝒍 𝑹𝒙,𝒊𝒏 =𝑻𝒙 𝑰𝒏𝒊𝒕 𝒐𝒖𝒕𝒑𝒖𝒕 𝒉 𝒕𝒐𝒕𝒂𝒍,𝑹𝒙𝑨𝒍𝒍 𝑹𝒙,𝒐𝒖𝒕 (same as current output impulse) (same as current input impulse) Tx AC Rx Non-DFE Rx DFE Tx Rx AC - Statistical uses 𝒉 𝒕𝒐𝒕𝒂𝒍,𝑹𝒙𝑨𝒍𝒍 𝑹𝒙,𝒐𝒖𝒕 (same as current flow) Note: ℎ 𝑡𝑜𝑡𝑎𝑙,𝑅𝑥𝐴𝑙𝑙 𝑅𝑥,𝑜𝑢𝑡 = ℎ 𝑡𝑜𝑡𝑎𝑙,𝑅𝑥𝑁𝑜𝑛𝐷𝐹𝐸 𝑅𝑥,𝑜𝑢𝑡 + ℎ 𝑅𝑥𝐹𝐸 𝑅𝑥,𝑜𝑢𝑡 10/17/2019

Redriver Time Domain Flow: if Tx2 has GetWave 𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍,𝑹𝒙𝑵𝒐𝒏𝑫𝑭𝑬 𝑹𝒙,𝒐𝒖𝒕  𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍 𝑹𝒙,𝒊𝒏 ∗ 𝒉 𝑹𝒙𝟐𝑵𝒐𝒏𝑫𝑭𝑬 𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍 𝑹𝒙,𝒊𝒏 = 𝒉 𝑨𝑪𝟐 Rx Init input impulses Rx Init output Tx2 AC2 Rx2 Non-DFE Rx2 DFE Tx1 Rx1 AC1 Tx2 Rx2 AC2 Tx1 Rx1 AC1 𝒉 𝑹𝒙𝑫𝑭𝑬 𝑹𝒙,𝒐𝒖𝒕 𝒉 𝒕𝒐𝒕𝒂𝒍 𝑹𝒙,𝒊𝒏 = 𝑹𝒙𝟏 𝑰𝒏𝒊𝒕 𝒐𝒖𝒕𝒑𝒖𝒕∗𝑻𝒙𝟐 𝑰𝒏𝒊𝒕 𝒐𝒖𝒕𝒑𝒖𝒕 𝒉 𝒕𝒐𝒕𝒂𝒍,𝑹𝒙𝑨𝒍𝒍 𝑹𝒙,𝒐𝒖𝒕 Tx2 AC2 Rx2 Non-DFE Rx2 DFE Tx1 Rx1 AC1 Tx2 Rx2 AC2 Tx1 Rx1 AC1 - Time domain simulation: if Rx2 has GetWave (same as current flow) Rx2 output = Tx2 GetWave output  𝒉 𝑨𝑪𝟐  Rx2 GetWave - Time domain simulation: if Rx2 is Init-only Rx2 output = Tx2 GetWave output  𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍,𝑹𝒙𝑵𝒐𝒏𝑫𝑭𝑬 𝑅𝑥,𝒐𝒖𝒕 + Tx1 digital input  𝒉 𝑹𝒙𝑫𝑭𝑬 𝑹𝒙,𝒐𝒖𝒕 (note: EDA tool must align Tx1 digital input and Tx2 GetWave output) 10/17/2019

Redriver Time Domain Flow: Init-only Tx2 𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍,𝑹𝒙𝑵𝒐𝒏𝑫𝑭𝑬 𝑹𝒙,𝒐𝒖𝒕  𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍 𝑹𝒙,𝒊𝒏 ∗𝒉 𝑹𝒙𝟐𝑵𝒐𝒏𝑫𝑭𝑬 𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍 𝑹𝒙,𝒊𝒏 =𝑻𝒙𝟐 𝑰𝒏𝒊𝒕 𝒐𝒖𝒕𝒑𝒖𝒕 Rx Init input impulses Rx Init output impulse Tx2 AC2 Rx2 Non-DFE Rx2 DFE Tx1 Rx1 AC1 Tx2 Rx2 AC2 Tx1 Rx1 AC1 𝒉 𝑹𝒙𝑫𝑭𝑬 𝑹𝒙,𝒐𝒖𝒕 𝒉 𝒕𝒐𝒕𝒂𝒍 𝑹𝒙,𝒊𝒏 = 𝑹𝒙𝟏 𝑰𝒏𝒊𝒕 𝒐𝒖𝒕𝒑𝒖𝒕∗𝑻𝒙𝟐 𝑰𝒏𝒊𝒕 𝒐𝒖𝒕𝒑𝒖𝒕 𝒉 𝒕𝒐𝒕𝒂𝒍,𝑹𝒙𝑨𝒍𝒍 𝑹𝒙,𝒐𝒖𝒕 Tx2 AC2 Rx2 Non-DFE Rx2 DFE Tx1 Rx1 AC1 Tx2 Rx2 AC2 Tx1 Rx1 AC1 - Time domain simulation: if Rx2 has GetWave (same as current flow) Rx2 output = Rx1 output  𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍 𝑅𝑥,𝒊𝒏  Rx2 GetWave - Time domain simulation: if Rx2 is Init-only Rx2 output = Rx1 output  𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍,𝑹𝒙𝑵𝒐𝒏𝑫𝑭𝑬 𝑅𝑥,𝒐𝒖𝒕 + Tx1 digital input  𝒉 𝑹𝒙𝑫𝑭𝑬 𝑹𝒙,𝒐𝒖𝒕 (note: EDA tool must align Tx1 digital input and Rx1 output) 10/17/2019

Redriver Statistical Flow 𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍,𝑹𝒙𝑵𝒐𝒏𝑫𝑭𝑬 𝑹𝒙,𝒐𝒖𝒕  𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍 𝑹𝒙,𝒊𝒏 ∗ 𝒉 𝑹𝒙𝟐𝑵𝒐𝒏𝑫𝑭𝑬 𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍 𝑹𝒙,𝒊𝒏 =𝑻𝒙𝟐 𝑰𝒏𝒊𝒕 𝒐𝒖𝒕𝒑𝒖𝒕 Rx Init input impulses Rx Init output impulse Tx2 AC2 Rx2 Non-DFE Rx2 DFE Tx1 Rx1 AC1 Tx2 Rx2 AC2 Tx1 Rx1 AC1 𝒉 𝑹𝒙𝑫𝑭𝑬 𝑹𝒙,𝒐𝒖𝒕 𝒉 𝒕𝒐𝒕𝒂𝒍 𝑹𝒙,𝒊𝒏 = 𝑹𝒙𝟏 𝑰𝒏𝒊𝒕 𝒐𝒖𝒕𝒑𝒖𝒕∗𝑻𝒙𝟐 𝑰𝒏𝒊𝒕 𝒐𝒖𝒕𝒑𝒖𝒕 𝒉 𝒕𝒐𝒕𝒂𝒍,𝑹𝒙𝑨𝒍𝒍 𝑹𝒙,𝒐𝒖𝒕 Tx2 AC2 Rx2 Non-DFE Rx2 DFE Tx1 Rx1 AC1 Tx2 Rx2 AC2 Tx1 Rx1 AC1 - Statistical uses 𝒉 𝒕𝒐𝒕𝒂𝒍,𝑹𝒙𝑨𝒍𝒍 𝑹𝒙,𝒐𝒖𝒕 for victim and 𝒉 𝒑𝒂𝒓𝒕𝒊𝒂𝒍,𝑹𝒙𝑵𝒐𝒏𝑫𝑭𝑬 𝑹𝒙,𝒐𝒖𝒕 for aggressors received by Rx1 10/17/2019

ℎ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑅𝑥𝑁𝑜𝑛𝐷𝐹𝐸 𝑅𝑥,𝑜𝑢𝑡 Summary No change to Tx Init Augment Rx Init impulse matrix by two columns for total impulse and Rx DFE Rx Init Input Impulse Rx Init Output Impulse Symbol Definition ℎ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑅𝑥,𝑖𝑛 Impulse from upstream Tx input or output, depending on whether Tx has GetWave and whether simulation is in time domain or statistical, to Rx input ℎ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑅𝑥𝑁𝑜𝑛𝐷𝐹𝐸 𝑅𝑥,𝑜𝑢𝑡 Combined impulse of ℎ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑅𝑥,𝑖𝑛 and Rx’s non-DFE portion (including gain and linear EQ) ℎ 𝑡𝑜𝑡𝑎𝑙 𝑅𝑥,𝑖𝑛 Impulse from terminal Tx input to Rx input. Rx Init performs optimization based on this impulse ℎ 𝑡𝑜𝑡𝑎𝑙,𝑅𝑥𝐴𝑙𝑙 𝑅𝑥,𝑜𝑢𝑡 Combined impulse of ℎ 𝑡𝑜𝑡𝑎𝑙 𝑅𝑥,𝑖𝑛 and the entire Rx (including gain , linear EQ and DFE) ℎ 𝑅𝑥𝐷𝐹𝐸 𝑅𝑥,𝑖𝑛 Empty place holder for Rx Init to return DFE impulse ℎ 𝑅𝑥𝐷𝐹𝐸 𝑅𝑥,𝑜𝑢𝑡 Rx DFE. Aligned cursors to ℎ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑅𝑥𝑁𝑜𝑛𝐷𝐹𝐸 𝑅𝑥,𝑜𝑢𝑡 ℎ 𝑥𝑡𝑙𝑘 𝑅𝑥,𝑖𝑛 Impulses from aggressors to Rx input ℎ 𝑥𝑡𝑙𝑘 𝑅𝑥,𝑜𝑢𝑡 Combined impulse of ℎ 𝑥𝑡𝑙𝑘 𝑅𝑥,𝑖𝑛 and Rx’s non-DFE portion (including gain and linear EQ) 10/17/2019

New Reserved Parameters Simulator_Supports_Augmented_Rx_Init_Impulse_Matrix Boolean, In, Optional, Default=False Set by simulator in the AMI_parameters_in input string of Rx AMI_Init to inform Rx model whether simulator supports the augmented impulse matrix Rx_Init_Supports_Augmented_Impulse_Matrix Boolean, Info, Optional, Default=False Rx parameter that informs simulator whether Rx AMI_Init supports the augmented impulse matrix 10/17/2019

New Reserved Parameters (cont’d) Rx_Init_Supports_Augmented_Impulse_Matrix = False Simulator doesn’t include Simulator_Supports_Augmented_Rx_Init_Impulse_Matrix in the AMI_parameters_in input string of Rx AMI_Init Simulator sends unaugmented impulse matrix to Rx AMI_Init Rx AMI_Init modifies the unaugmented impulse matrix Simulator proceeds according to the existing flow Rx_Init_Supports_Augmented_Impulse_Matrix = True & Simulator supports the new flow Simulator sets Simulator_Supports_Augmented_Rx_Init_Impule_Matrix to True in the AMI_parameters_in input string of Rx AMI_Init Simulator sends augmented impulse matrix to Rx AMI_Init Rx AMI_Init modifies the augmented impulse matrix Simulator proceeds according to the new flow 10/17/2019

New Reserved Parameters (cont’d) Rx_Init_Supports_Augmented_Impulse_Matrix = True & Simulator doesn’t support the new flow Simulator doesn’t include Simulator_Supports_Augmented_Rx_Init_Impule_Matrix in the AMI_parameters_in input string of Rx AMI_Init Simulator sends unaugmented impulse matrix to Rx AMI_Init If Rx supports the existing flow, its AMI_Init modifies the unaugmented impulse matrix. Simulator proceeds according to the existing flow. If Rx doesn’t support the existing flow, its AMI_Init errors out 10/17/2019