Volume 76, Issue 5, Pages (May 1999)

Slides:



Advertisements
Similar presentations
Jean Baum, Barbara Brodsky  Folding and Design 
Advertisements

Sandro Keller, Heiko Heerklotz, Nadin Jahnke, Alfred Blume 
Protein Diffusion in Living Skeletal Muscle Fibers: Dependence on Protein Size, Fiber Type, and Contraction  Simon Papadopoulos, Klaus D. Jürgens, Gerolf.
Volume 106, Issue 6, Pages (March 2014)
Geometrical Properties of Gel and Fluid Clusters in DMPC/DSPC Bilayers: Monte Carlo Simulation Approach Using a Two-State Model  István P. Sugár, Ekaterina.
Kinetic Hysteresis in Collagen Folding
Thomas G. Anderson, Harden M. McConnell  Biophysical Journal 
Madoka Suzuki, Hideaki Fujita, Shin’ichi Ishiwata  Biophysical Journal 
Numerical Study of the Entropy Loss of Dimerization and the Folding Thermodynamics of the GCN4 Leucine Zipper  Jorge Viñals, Andrzej Kolinski, Jeffrey.
Volume 23, Issue 9, Pages (September 2015)
Precision and Variability in Bacterial Temperature Sensing
Volume 85, Issue 5, Pages (November 2003)
Volume 95, Issue 6, Pages (September 2008)
Volume 109, Issue 11, Pages (December 2015)
R. Jay Mashl, H. Larry Scott, Shankar Subramaniam, Eric Jakobsson 
Volume 85, Issue 5, Pages (November 2003)
Volume 102, Issue 2, Pages (January 2012)
Andrés Jara-Oseguera, León D. Islas  Biophysical Journal 
Hiren Patel, Quang Huynh, Dominik Bärlehner, Heiko Heerklotz 
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Joseph M. Johnson, William J. Betz  Biophysical Journal 
Volume 106, Issue 6, Pages (March 2014)
Christopher B. Stanley, Tatiana Perevozchikova, Valerie Berthelier 
Microsecond Unfolding Kinetics of Sheep Prion Protein Reveals an Intermediate that Correlates with Susceptibility to Classical Scrapie  Kai-Chun Chen,
Volume 86, Issue 4, Pages (April 2004)
Volume 19, Issue 7, Pages (July 2011)
Static Light Scattering From Concentrated Protein Solutions II: Experimental Test of Theory for Protein Mixtures and Weakly Self-Associating Proteins 
Volume 114, Issue 1, Pages (January 2018)
Volume 86, Issue 4, Pages (April 2004)
Heleen Meuzelaar, Jocelyne Vreede, Sander Woutersen 
Volume 85, Issue 4, Pages (October 2003)
Kinetic and Energetic Analysis of Thermally Activated TRPV1 Channels
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Ivan V. Polozov, Klaus Gawrisch  Biophysical Journal 
Michael Katzer, William Stillwell  Biophysical Journal 
Dynamic Motions of the HIV-1 Frameshift Site RNA
Volume 84, Issue 6, Pages (June 2003)
Colocalization of Multiple DNA Loci: A Physical Mechanism
Janin Glaenzer, Martin F. Peter, Gavin H. Thomas, Gregor Hagelueken 
Volume 90, Issue 8, Pages (April 2006)
Volume 93, Issue 12, Pages (December 2007)
Kinetic Hysteresis in Collagen Folding
Osteogenesis Imperfecta Model Peptides: Incorporation of Residues Replacing Gly within a Triple Helix Achieved by Renucleation and Local Flexibility 
Volume 23, Issue 9, Pages (September 2015)
Volume 106, Issue 4, Pages (February 2014)
Yuguang Mu, Lars Nordenskiöld, James P. Tam  Biophysical Journal 
Thermodynamic Characterization of the Unfolding of the Prion Protein
Structural Flexibility of CaV1. 2 and CaV2
Daniel Krofchick, Mel Silverman  Biophysical Journal 
Untangling the Influence of a Protein Knot on Folding
Congju Chen, Irina M. Russu  Biophysical Journal 
Volume 83, Issue 3, Pages (September 2002)
Molecular Mechanism for Stabilizing a Short Helical Peptide Studied by Generalized- Ensemble Simulations with Explicit Solvent  Yuji Sugita, Yuko Okamoto 
Volume 83, Issue 6, Pages (December 2002)
Volume 94, Issue 11, Pages (June 2008)
Open-State Models of a Potassium Channel
Volume 90, Issue 10, Pages (May 2006)
Cyclic AMP Diffusion Coefficient in Frog Olfactory Cilia
Rinat Nahum-Levy, Dafna Lipinski, Sara Shavit, Morris Benveniste 
Ana Caballero-Herrera, Lennart Nilsson  Biophysical Journal 
Volume 108, Issue 9, Pages (May 2015)
Volume 75, Issue 2, Pages (August 1998)
Christina Karatzaferi, Marc K. Chinn, Roger Cooke  Biophysical Journal 
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures
Madoka Suzuki, Hideaki Fujita, Shin’ichi Ishiwata  Biophysical Journal 
Volume 86, Issue 3, Pages (March 2004)
Kinetic Folding Mechanism of Erythropoietin
Volume 94, Issue 11, Pages (June 2008)
Volume 108, Issue 9, Pages (May 2015)
Presentation transcript:

Volume 76, Issue 5, Pages 2752-2759 (May 1999) Thermodynamics and Kinetics of a Folded-Folded′ Transition at Valine-9 of a GCN4-Like Leucine Zipper  D. André d’Avignon, G. Larry Bretthorst, Marilyn Emerson Holtzer, Alfred Holtzer  Biophysical Journal  Volume 76, Issue 5, Pages 2752-2759 (May 1999) DOI: 10.1016/S0006-3495(99)77428-X Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 1 13Cα-NMR spectra of GCN4-lzK in (NaCl)100(NaPi)50(D2O)5514(7.4) near room temperature. Formal concentration of peptide chains, 1.24mM. Regions for full range of resonances at the respective labeled sites V9(a), L19(d), and G31(b) are marked. V9(a) resonances assigned to local folded form favored at low T (FaV9) and at moderate T (FbV9) are also marked. Biophysical Journal 1999 76, 2752-2759DOI: (10.1016/S0006-3495(99)77428-X) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 2 Effect of inversion pulse on longitudinal magnetization at V9(a) of GCN4-lzK. Solvent and peptide chain formality as in Fig. 1. All magnetizations first normalized to glycine (see text), then self-normalized to equilibrium values (see text). Open symbols: at equilibrium; filled symbols: at 0.0s after Gaussian inversion centered at −0.020s. Squares: values at FaV9; circles: values at FbV9. (A) FaV9 inverted. (B) FbV9 inverted. Biophysical Journal 1999 76, 2752-2759DOI: (10.1016/S0006-3495(99)77428-X) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 3 Time course of magnetization in SIT experiments for V9(a) of GCN4-lzK at 28.7°C. Solvent and peptide chain formality as in Fig. 1. Open circles: experimental FaV9 magnetizations; open diamonds: experimental FbV9 magnetizations. Solid curves: solutions to kinetic differential equations with parameters from Bayesian analysis. Dashed horizontal lines: calculated asymptotes for FaV9 sites; dot-dashed horizontal lines: calculated asymptotes for FbV9 sites. (A) FaV9 inverted. (B) FbV9 inverted. Biophysical Journal 1999 76, 2752-2759DOI: (10.1016/S0006-3495(99)77428-X) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 4 SIT-derived T1 values at site V9(a) of GCN4-lzK versus η(T)/T. Filled squares: FaV9; filled circles: FbV9. Error bars are from Bayesian probability distributions. Dot-dashed line: prior result for FaL13; dashed line: prior result for FbL13. Biophysical Journal 1999 76, 2752-2759DOI: (10.1016/S0006-3495(99)77428-X) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 5 van’t Hoff plot of equilibrium constants at site V9(a) of GCN4-lzK. Open circles: [FbV9]/[FaV9] at spin equilibrium; filled triangles: kabV9/kbaV9 from SIT; solid line: least-squares combined fit. Dashed line: prior result for L13(e). Error bars appear only where error is larger than the symbol. Biophysical Journal 1999 76, 2752-2759DOI: (10.1016/S0006-3495(99)77428-X) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 6 Arrhenius plots of rate constants for interconversion of folded forms at site V9(a) of GCN4-lzK. Open squares: kabV9; filled diamonds: kbaV9; solid lines: least-squares fits to Eyring equation. Dot-dashed line: prior result for kabL13; dashed line: prior result for kbaL13. Error bars appear only where error is larger than the symbol. Biophysical Journal 1999 76, 2752-2759DOI: (10.1016/S0006-3495(99)77428-X) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 7 Schematic energy diagram at interpolated midpoint (27.2°C) of reaction FaV9⇄FbV9. Double-dagger superscript designates transition state. From left to right, standard Gibbs energy, enthalpy, and temperature-entropy product, all from SIT. Abscissas (reaction coordinate) are shifted to allow parallel presentation. Ordinates (G, H, and TS) for form FaV9 are arbitrarily set to zero. Dashed lines: prior results for L13 at its midpoint (24°C). Biophysical Journal 1999 76, 2752-2759DOI: (10.1016/S0006-3495(99)77428-X) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 8 Schematic cross-section of the GCN4-lzK coiled coil at the level of residues 9–15, the heptad containing both V9(a) and L13(e). Helix direction is outward from the plane of the page. Residue types at corresponding sites in other heptads are also indicated. Double-headed arrows indicate canonical interhelical E20(e)-K15(g) and K27(e)-E22(g) salt bridges, which are seen in the x-ray crystal structure of parent GCN4-lz. The additional E6(e)-K1(g) interhelical salt bridges are canonical, but are not shown in the figure because the corresponding E6(e)-R1(g) bridges are not seen in the crystal structure of the parent. Biophysical Journal 1999 76, 2752-2759DOI: (10.1016/S0006-3495(99)77428-X) Copyright © 1999 The Biophysical Society Terms and Conditions