Intraoperative visualization of the tumor microenvironment and quantification of extracellular vesicles by label-free nonlinear imaging by Yi Sun, Sixian.

Slides:



Advertisements
Similar presentations
Fig. 2 Chiral and achiral structures of formic acid.
Advertisements

Fig. 4 3D reconfiguration of liquid metals for electronics.
Fig. 5 MicroLED array with 3D liquid metal interconnects.
Fig. 2 Transport properties of a BP transistor at low temperature.
Fig. 2 Reconfiguration of liquid metals into 3D structures.
Fig. 1 High-resolution printing of liquid metals.
Fig. 4 Ballistic simulation of BP FETs.
Fig. 3 The electrical contact of direct-printed and reconfigured liquid metals. The electrical contact of direct-printed and reconfigured liquid metals.
Fig. 2 Global production, use, and fate of polymer resins, synthetic fibers, and additives (1950 to 2015; in million metric tons). Global production, use,
Fig. 1 Pump-probe signatures of vermilion (red HgS), black HgS, and metallic Hg. Pump-probe signatures of vermilion (red HgS), black HgS, and metallic.
Fig. 4 Super-resolution live imaging of calcium containing vesicle transports via lysosomes. Super-resolution live imaging of calcium containing vesicle.
Fig. 1 Examples of experimental stimuli and behavioral performance.
Fig. 3 Saturation velocity of BP FETs.
Fig. 1 NP-free Ch-CNC droplets.
Fig. 1 Wireless, battery-free neural cuff for programmable pharmacology and optogenetics. Wireless, battery-free neural cuff for programmable pharmacology.
Fig. 3 Electron PSD in various regions.
Fig. 4 Morphogenesis in the Ch-CNC host droplets and NP assemblies.
Fig. 4 Resynthesized complex boronic acid derivatives based on different scaffolds on a millimole scale and corresponding yields. Resynthesized complex.
Fig. 2 Ferroelectric domains resolved in WTe2 single crystals.
Fig. 3 Scan rate effects on the layer edge current.
Fig. 3 Implantation of the battery-free optofluidic nerve cuff system and its impact on animal behavior and nerve health. Implantation of the battery-free.
Fig. 3 Rotation experiment, setup.
Full-frame single image recording the violation of a Bell inequality
Fig. 4 Full-frame single image recording the violation of a Bell inequality and implementing the scanning of the phase circle. Full-frame single image.
Fig. 2 Full-frame images recording the violation of a Bell inequality in four images. Full-frame images recording the violation of a Bell inequality in.
Fig. 1 Phase diagram and FS topologies.
Fig. 1 Distribution of total and fake news shares.
Fig. 2 2D QWs of different propagation lengths.
Fig. 1 Structure of L10-IrMn.
Fig. 5 Chaetopterus tube lining formed in seawater or within sediment.
Fig. 2 EUV TG signal. EUV TG signal. Black lines in (A), (B), and (C) are the EUV TG signals from Si3N4 membranes at LTG = 110, 85, and 28 nm, respectively,
Fig. 6 WPS imaging of different chemical components in living cells.
Fig. 1 Measurement setup and crystal structure.
Fig. 1 IDH3α expression is elevated in human-derived gliomas.
Fig. 1 Histograms of the number of first messages received by men and women in each of our four cities. Histograms of the number of first messages received.
Fig. 5 Schematic phase diagrams of Ising spin systems and Mott transition systems. Schematic phase diagrams of Ising spin systems and Mott transition systems.
Contrast agent uptake for the four different groups of MMA mice
Fig. 3 Production of protein and Fe(II) at the end of growth correlated with increasing concentrations of ferrihydrite in the media that contained 0.2.
Fig. 2 NH3, NOx, SO2, and NMVOC emission changes triggered by the JJJ clean air policy. NH3, NOx, SO2, and NMVOC emission changes triggered by the JJJ.
Blue particles observed embedded within archaeological dental calculus
Fig. 1 Experiment description.
Fig. 4 Relationships between light and economic parameters.
Fig. 5 Comparison of the liquid products generated from photocatalytic CO2 reduction reactions (CO2RR) and CO reduction reactions (CORR) on two catalysts.
Fig. 4 BS-SEM images, ternary diagrams, and phase maps for the text and reverse sides of the TS. BS-SEM images, ternary diagrams, and phase maps for the.
Fig. 1 Location of the Jirzankal Cemetery.
Fig. 4 CO2 emission changes triggered by the JJJ clean air policy.
Fig. 4 Phase diagram showing significant order parameters ∣pk∣ versus T and wc. Phase diagram showing significant order parameters ∣pk∣ versus T and wc.
Multiplexed four- and eight-channel devices for rapid processing
Fig. 3 MXene TLs and their attenuations.
Fig. 2 Mean field results. Mean field results. (A) Solutions P(x) to Eq. 4 for a range of T and wc = (B) Modulus ∣pk∣ of order parameters versus.
Fig. 2 RVFV causes pathology within the liver, uterus, and placenta of pregnant dams. RVFV causes pathology within the liver, uterus, and placenta of pregnant.
Fig. 3 Comparisons of NDVI trends over the globally vegetated areas from 1982 to Comparisons of NDVI trends over the globally vegetated areas from.
Fig. 2 Large-scale μXRF and EDS characterization of the text-containing side of the TS. Large-scale μXRF and EDS characterization of the text-containing.
Fig. 3 Electrochemical performances of symmetric cells using control Li and composite Li electrodes. Electrochemical performances of symmetric cells using.
Fig. 4 Spatial mapping of the distribution and intensity of industrial fishing catch. Spatial mapping of the distribution and intensity of industrial fishing.
Fig. 4 Single-particle contact angle measurements.
Fig. 6 MD simulations of assembled binary supraballs.
Fig. 4 In vivo siRIPK4 delivered by HNTs inhibits tumor promotion of T24 bladder cancer cells in an in situ model of bladder cancer (n = 12 rats in each.
Fig. 3 Supraballs and films assembled from binary 219/217nm SPs/SMPs.
Fig. 2 Supraballs and films from binary SPs.
Fig. 3 High-tide flood extent at water levels of 1. 73, 2. 03, 2
Fig. 2 Comparison between the different reflective metasurface proposals when θi = 0° and θr = 70°. Comparison between the different reflective metasurface.
Fig. 1 Design principle and SEM characterization of super-origami DNA nanostructures with n-tuples. Design principle and SEM characterization of super-origami.
Fig. 2 Daily TNC pickups and drop-offs for an average Wednesday in fall 2016 (1). Daily TNC pickups and drop-offs for an average Wednesday in fall 2016.
Fig. 4 Effects of individual picosecond and microsecond pulses.
Fig. 5 Flickering RSCF display at night.
Fig. 1 Completely derived from natural wood, nanowood with hierarchically aligned cellulose nanofibrils can be used as an anisotropic super thermal insulator.
Fig. 2 Imaging blood vessel before and after closure.
Fig. 5 CD19-tPSMA(N9del) CAR T cell numbers in mouse and human.
Fig. 3 4n hybrids undergo bipolar and tripolar mitosis.
Presentation transcript:

Intraoperative visualization of the tumor microenvironment and quantification of extracellular vesicles by label-free nonlinear imaging by Yi Sun, Sixian You, Haohua Tu, Darold R. Spillman, Eric J. Chaney, Marina Marjanovic, Joanne Li, Ronit Barkalifa, Jianfeng Wang, Anna M. Higham, Natasha N. Luckey, Kimberly A. Cradock, Z. George Liu, and Stephen A. Boppart Science Volume 4(12):eaau5603 December 19, 2018 Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Fig. 1 Multimodal intraoperative label-free nonlinear optical images of human breast tissues and the corresponding histology. Multimodal intraoperative label-free nonlinear optical images of human breast tissues and the corresponding histology. Multimodal label-free nonlinear optical image (left) and the colocated histology (right) of (A) invasive ductal carcinoma (IDC) with an overall orientation of collagen alignment and tumor cell infiltration (red dashed arrows), (B) adipocytes (red dashed arrows) and blood vessel (red solid arrows), (C) adipocytes (red dashed arrows) and mammary duct (red solid arrows), and (D) healthy breast tissue from breast reduction surgery. Scale bars, 100 μm. Yi Sun et al. Sci Adv 2018;4:eaau5603 Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Fig. 2 EV enrichment in the tumor microenvironment. EV enrichment in the tumor microenvironment. (A) Multimodal label-free nonlinear optical image of a tissue site with ductal carcinoma in situ (DCIS) (boundary marked by red dashed line). (B) Colocated H&E histology. (C) THG-contrast image visualizing the DCIS boundary and EVs. (D) Binary image of EVs segmented from (C). Scale bars, 100 μm. Yi Sun et al. Sci Adv 2018;4:eaau5603 Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Fig. 3 Quantification and pathological correlations of EVs. Quantification and pathological correlations of EVs. (A) Flowchart of EV segmentation and quantification algorithm. (B) Representative THG-contrast image acquired from the tumor microenvironment and processed binary image, highlighting the presence of EVs within the tumor microenvironment. (C) Comparison of EV density from breast cancer cases versus healthy breast reduction cases. The average EV density is 142 ± 55 nl−1 for the cancer cases, while it is only 23 ± 8 nl−1 for the healthy breast reduction cases. ****P < 0.0001 (one-sided Student’s t test). (D) EV density data from each case are registered by the distance from tumor to closest surgical margin and the cancer invasiveness grade. An overall decreasing trend of EV density is identified with increasing tumor-to-margin distance. Data points are divided into three groups (shaded areas) representing different histologic grades of IDC. (E) Relationship between EV density and IDC histologic grade. To minimize the effect of spatial heterogeneity, EV data were chosen from cases within a small range of margin distances (0 to 8 mm). Sample size of each IDC grade is indicated above each bar. ***P < 0.001, **P < 0.01, *P < 0.1 (multiway ANOVA test, multiple comparison test). Yi Sun et al. Sci Adv 2018;4:eaau5603 Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Fig. 4 Determination of phase of tumor cell invasion around desmoplasia by EV distribution. Determination of phase of tumor cell invasion around desmoplasia by EV distribution. (A) Multimodal label-free nonlinear image of desmoplasia at an early phase. There is an interface (red dashed line) between the tumor and the dense collagen fibers of desmoplasia, and the tumor cells are identified only in the tumor region (white arrows). (B) Colocated histology image of the early-phase desmoplasia. (C) Binary image of segmented EVs from the THG channel of (A). The average (AVG) EV density is quantified to be 144 nl−1, and there is no major difference (113 nl−1 versus 163 nl−1) between the EV counts from each side of the interface. (D) Multimodal nonlinear optical image of desmoplasia at a late phase. The interface between dense collagen fibers and the tumor is marked by a red dashed line, with infiltrating tumor cells being identified within the collagen region (white arrows). (E) Colocated histology image of this late-phase desmoplastic reaction. (F) Binary image of segmented EVs from the THG channel (A). The average EV density of the entire FOV is 575 nl−1, but the EV density within the dense collagen fibers (938 nl−1) is much higher than the EV density within the tumor (188 nl−1). Scale bars, 100 μm. Yi Sun et al. Sci Adv 2018;4:eaau5603 Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Fig. 5 Intraoperative label-free multimodal imaging system. Intraoperative label-free multimodal imaging system. (A) A photograph of the compact and portable intraoperative label-free multimodal nonlinear imaging system. (B) Software interface of the imaging system. (C) System schematic. (D) Spectral range and display color of the four nonlinear optical imaging modalities. L, lens; GM, galvanometer-scanning mirror; DM, dichroic mirror; OBJ, objective; FW, filter wheel; PMT, photomultiplier tube. (Photo credit: Yi Sun, Biophotonics Imaging Laboratory, University of Illinois at Urbana-Champaign.)‏ Yi Sun et al. Sci Adv 2018;4:eaau5603 Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).