T2 Relaxation Time T2 relaxation time is defined as the time needed to dephase up to 37% of the original value. T2 relaxation refers to the progressive.

Slides:



Advertisements
Similar presentations
Pulse Timing parameters & Weighting
Advertisements

Ari Borthakur, PhD Associate Director, Center for Magnetic Resonance & Optical Imaging Department of Radiology Perelman school of Medicine, University.
Principles of the MRI Signal Contrast Mechanisms MR Image Formation John VanMeter, Ph.D. Center for Functional and Molecular Imaging Georgetown University.
Contrast T1 weighted – (MPRAGE-anatomical) T2 weighted – (fmri)
Imaging Sequences part I
Introduction to MRI Magnetic Resonance Imaging
PULSE SEQUENCES Emphasizing the differences among spin density, T1, and T2 relaxation time constants of the tissues is the key to the exquisite contrast.
Proton Spin In absence of a magnetic field, protons spin at random
MRI Phillip W Patton, Ph.D..
BE 581 Lecture 3- Intro to MRI.
Basis of the BOLD signal
PHYSICS OF MAGNETIC RESONANCE
MR TRACKING METHODS Dr. Dan Gamliel, Dept. of Medical Physics,
Magnetic Resonance Imaging
Magnetic Resonance Imaging
Lecture 2 1 H Nuclear Magnetic Resonance. Gas Chromatograph of Molecular Hydrogen at –100 °C Thermoconductivity Detector 12.
ELEG 479 Lecture #9 Magnetic Resonance (MR) Imaging
Basics of Magnetic Resonance Imaging
MRI Physics I: Spins, Excitation, Relaxation
Magnetic Resonance Imaging
Magnetic Resonance Imaging Basic principles of MRI This lecture was taken from “Simply Physics” Click here to link to this site.
MAGENETIC RESONANCE IMAGINING T2, T5, T7.
Radiofrequency Pulse Shapes and Functions
MRI: an Introduction By Mohammad Ali Ahmadi Pajouh Amirkabir University of Technology Biomedical Eng. Dep.
What are we measuring in fMRI? Caroline Catmur Jack Kelly.
Magnetic Resonance Imaging 4
Physics of Magnetic Resonance Chapter 12
대구가톨릭대학병원 영상의학과 이 영 환 M M R R Basic Physics. MR Signal T1-, T2-weighted TR, TE MR Signal T1-, T2-weighted TR, TE.
Principles of Magnetic Resonance
Imaging Sequences part II
MRI Physics: Just the Basics
Magnetic Resonance Imaging
Basic fMRI Physics In BOLD fMRI, we are measuring:
2012 spring fMRI: theory & practice
Seminar October, 2008 j. brnjas-kraljević. Imaging (MRI)  tomography technique  tomography technique – the volume image is built up by images of thin.
Chapter 4 Mark D. Herbst, M.D., Ph.D.. Magnetization MRI depends on magnetization of tissues Temporary magnetization occurs when the hydrogen nuclei are.
Basic Physical Principles of MRI
Basic Concept of MRI Chun Yuan. Magnetic Moment Magnetic dipole and magnetic moment Nuclei with an odd number of protons or neutrons have a net magnetic.
September, 2003BME 1450 Introduction to NMR 1 Nuclear Magnetic Resonance (NMR) is a phenomenon discovered about 60 years ago.
fMRI Methods Lecture2 – MRI Physics
Nuclear Magnetic Resonance I Magnetization properties Generation and detection of signals.
Magnetic Resonance Imaging – Basic Principles –
MRI Physics Dr Mohamed El Safwany, MD.. MRI Magnetic Resonance Imaging Magnetic Resonance Imaging.
Magnetic Resonance Imaging
MRI. Vector Review x y z Vector Review (2) The Dot Product The Cross Product (a scalar) (a vector) (a scalar)
BME1450 Intro to MRI February 2002 The Basics The Details – Physics The Details – Imaging.
Protons (hydrogen nuclei act like little magnets) MRI Collective Magnetic Moment of Protons (M 0 ) Each pixel is a glass of protons B 0 = 3T (not to scale)
V.G.Wimalasena Principal School of Radiography
Fund BioImag : Relaxation of nuclear magnetization 1.How is the MR signal detected ? 2.What is the quantum-mechanical equivalent of the rotating.
RT 4912 Review (C) Rex T. Christensen MHA RT (R) (MR) (CT) (ARRT) CIIP.
Magnetic Resonance Imaging Glenn Pierce, King’s College London, Department of Physics Introduction Edward Purcell and Felix Bloch were both awarded the.
Spinning Nucleus Produces Magnetic Moment
Charged particle. Moving charge = current Associated magnetic field - B.
 This depends on a property of nuclei called spin.  Gyroscope: Principle: As long as its disc remains spinning rapidly the direction of the spin axis.
بسم الله الرحمن الرحيم Dr. Maged Ali Hegazy Assistant Professor Alazhar University.
10 spring fMRI: theory & practice
Chap.12 (3) Medical imaging
Key sequences in MSK imaging
MRI Physics in a Nutshell Christian Schwarzbauer
Where Mt is the magnetization at time = t, the time after the 90o pulse, Mmax is the maximum magnetization at full recovery. At a time = one T1, the signal.
Physics of Magnetic Resonance Imaging
Topics The concept of spin Precession of magnetic spin Relaxation
Basic MRI I Chapter 3 Notes.
MEDICAL IMAGING TECHNOLOGIES
10.4 Continuous Wave NMR Instrumentation coherent detection
MRI: From Protons to Pixels
How MRI Works By Wesley Eastridge, adapted from and with illustrations from The Basics of MRI by Joseph P. Hornak, Ph.D.
Repetition time (TR) and T1-weighting.
(4)ELECTRONIC SUPPORT SYSTEM
The echo time (TE) The echo time (TE) refers to the time between the application of the radiofrequency excitation pulse and the peak of the signal induced.
Presentation transcript:

T2 Relaxation Time T2 relaxation time is defined as the time needed to dephase up to 37% of the original value. T2 relaxation refers to the progressive dephasing of spinning dipoles following the 90° pulse as seen in a spin-echo sequence due to tissue-particular characteristics, primarily those that affect the rate of movement of protons, most of which are found in water molecules. This is alternatively known as spin-spin relaxation. Immediately after the 90° pulse, all the spinning dipoles within the slice are exactly in phase. Almost immediately, they lose coherence as some spin slightly faster than the others. This dephasing effect has been likened to the opening of a chinese fan. The result is that the Mxy component of the magnetic vector decreases exponentially as a function of the T2 time constant.

The dephasing process Simultaneously, something changes in the transversal plane; the protons spinning synchronously (= in-phase) will no longer spin synchronously once the radiofrequent wave has been switched off (= out-of-phase); Dephasing occurs because the magnetic field of the MRI scanner is no longer 100% homogeneous. The protons will be affected by irregularities in the magnetic field and no longer spin synchronously. Protons may be regarded as little magnets and thereby accelerate the dephasing process. Explanation: consider in-phase protons as a group of soldiers marching synchronously. When the leader (‘radiofrequent pulse') stops giving commands to the soldiers (‘radiofrequent pulse is switched off'), the soldiers (‘protons') will no longer march synchronously. Only one soldier (‘proton') in the rank needs to trip to set off a rapid chain reaction of soldiers (‘protons') no longer marching synchronously. Dephasing is an undesired phenomenon, seeing the protons must be in- phase for the receiving coils to receive the signal.

When transmitting a radiofrequent (RF) pulse, the protons in the transversal plane (XY axis) will be in-phase

Dephasing occurs when the radiofrequent (RF) pulse is switched off.

T2 relaxation times of fat and water.

Factors affecting T2 relaxation Each magnetic dipole exists in a micro environment unique to the tissue where it belongs. In all tissues, there exist tiny magnetic fields (~1mT) generated by the spinning hydrogen nuclei (protons). T2 relaxation occurs in a varying local magnetic field when there is transfer of energy between dipoles facing parallel and antiparallel to the external magnetic field, flipping each other in opposite directions. This rate of flipping or transfer of energy between spins or dipoles increases as the frequency of the variation of the local magnetic field approaches the Larmor frequency. This is related to the rate of rotation and translation of the water molecule or adjacent dipoles. The dipole-dipole interaction is also increased the strength of the local field which is dependent on the proximity of the adjacent dipoles. In pure water T2 is long, about 3-4 seconds because water molecules move considerably faster than the Larmor frequency. The rapid motion results in the T1 and T2 being about the same in pure water.

In solutions of macromolecules and tissues the relaxation rate is much faster, i.e., the T2 time is shorter. This is related in part to the slower motion of protons both in macromolecules as well as water molecules attracted to the surface of the macromolecule. This slower motion is closer to the Larmor frequency. Examples of T1 and T2 in biological tissues include: CSF, T1=1.9 seconds and T2=0.25 seconds; brain white matter, T1=0.5 seconds and T2=0.07 seconds (70 msec). As motion and therefore the local field fluctuations decreases below the Larmor frequency in tissues and tendons, dipoles that are aligned with the main magnetic field start contributing to T2 relaxation by causing local variations in precession rate. The resulting short T2 time causes tendons and other semi-solid tissues to appear dark on T2-weighted images. Long T2 fluids with few macromolecules such as water, urine and CSF will appear bright on T2-weighted images.

Loss of signal and darkness on T2-weighted images in cortical bone, teeth, calculi is primarily a result of little water (low proton density) unlike tendons and ligaments 3. The water that is in bone, teeth and calculi would mostly be bound as to collagen and would have a very short T2 time constant and appear dark. There is also mild susceptibility differences between bone and soft tissue that could contribute to a dark appearance at interfaces, as between marrow and bone trabecula. This is seen in particular on gradient echo images. Note: T2 relaxation is not to be confused with T2* which is a broader phenomenon and includes static magnetic field effects in addition to the tissue-characteristic T2 relaxation.

Repetition time (TR) The repetition time (TR) is the time from the application of an excitation pulse to the application of the next pulse. It determines how much longitudinal magnetization recovers between each pulse. It is measured in milliseconds.