Coordination-Driven Self-Assembly of Metallodendrimers Possessing Well-Defined and Controllable Cavities as Cores Hai-Bo Yang,* Adam M. Hawkridge, Songping D. Huang, Neeladri Das, Scott D. Bunge, David C. Muddiman, and Peter J. Stang* J. Am. Chem. Soc. 2007, 129, 2120-2129.
The Dendritic Structure Host-guest chemistry Material science Membrane chemistry Catalysis Stoddart, J. F. et al. Prog. Polym. Sci. 1998, 23, 1-56.
“Convergent” Dendrimer Growth Stoddart, J. F. et al. Prog. Polym. Sci. 1998, 23, 1-56.
“Divergent” Dendrimer Growth Stoddart, J. F. et al. Prog. Polym. Sci. 1998, 23, 1-56.
Newkome, G. R. et al. Chem. Rev. 1999, 99, 1689-1746. Metallodendrimer Newkome, G. R. et al. Chem. Rev. 1999, 99, 1689-1746.
Metals as Branching Centers Denti, G. et al. J. Am. Chem. Soc. 1992, 114, 2944-2950.
Metals as Building Block Connectors Puddephatt, R. J. et al. Organometallics 1995, 14, 1681-1687.
Fréchet, J. M. et al. Chem. Mater. 1998, 10, 30-38. Metals as Cores Fréchet, J. M. et al. Chem. Mater. 1998, 10, 30-38.
Metals as Termination Groups (Surface Functionalization) Lemo, J.; Heuze, K.; Astruc, D. Org. Lett. 2005, 7, 2253-2256.
Metals as Structural Auxiliaries Kaneda, K. J. Am. Chem. Soc. 2004, 126, 1604-1605.
Supramolecular Coordination Chemistry Hydrogen bonding Metal-ligand coordination π-π stacking Eletrostatic interactions van der Waals forces Hydrophobic interactions Hydrophilic interactions etc. Mirkin, C. A. et al. Angew. Chem. Int. Ed. 2001, 40, 2022-2043.
Supramolecular Assembly of Polyhedra Stang, P. J.; Olenyuk, B. Acc. Chem. Res. 1997, 30, 502-518
Self-Assembly of Rhomboidal and Hexagonal, “Snowflake-Shaped” Metallodendrimers.
Angular Dendritic Donor Precursors Synthesis of [G0]-[G3] 120o Angular Dendritic Donor Precursors Sonogashira coupling acylation hydrolysis etherification 在120度ligand的前驅物合成 作者選用3,5-dibromo-phenol 1號Compound 兩個bromo呈現夾角為120度 先作一個acylation利用acyl group作一個保護基形成2號Compound 兩個bromo進行sonogashira C-C coupling reaction形成3號Compound有兩個pyridyl group ester group 經過hydrolysis(水解)去保護基形成4號Compound 然後再進行etherification(醚化) SN2的反應形成Compound 5a-5d
Structures of [G0]-[G3] 120o Angular Donor Precursors 5a-d
Self-Assembly of Rhomboidal Metallodendrimers 7a-d 31P{1H} NMR δ14.6 ppm (-6.4 ppm) 1JPt-P=2707.7 (-177 Hz) 96-99% Hα Hβ 5a 8.60 7.39-7.45 5b 8.60 7.33-7.44 5c 8.60 7.31-7.42 5d 8.60 7.31-3.42 Hα Hβ 7a 9.35, 8.72 7.59 7b 9.36, 8.70 7.59 7c 9.37, 8.68 7.59 7d 9.36, 8.65 7.58
Structures of [G0]-[G3]-Rhomboidal Metallodendrimers 7a-d
Calculated and Experimental ESI-MS Spectra of [G0]-[G2]-Rhomboidal Metallodendrimers 7a-c [M-2NO3]2+ [M-3NO3]3+ [M-2NO3]2+ [M-3NO3]3+ [M-2NO3]2+ [M-3NO3]3+ C130H172N8O14P8Pt4 C158H196N8O18P8Pt4 C214H244N8O26P8Pt4 H 1(100.0%) C 12(98.9%) 13(1.1%) N 14(99.6%) 15(0.4%) O 16(99.8%) 18(0.2%) P 31(100.0%) Pt 192(0.8%) 194(32.9%) 195(33.8%) 196(25.3%) 198 (7.2%) Isotope %
Calculated and Experimental ESI-FT-ICR-MS Spectra of [G3]-Rhomboidal Metallodendrimer 7d C326H340N8O42P8Pt4 Isotope % H 1(100.0%) C 12(98.9%) 13(1.1%) N 14(99.6%) 15(0.4%) O 16(99.8%) 18(0.2%) P 31(100.0%) Pt 192(0.8%) 194(32.9%) 195(33.8%) 196(25.3%) 198 (7.2%)
[G0]-Rhomboidal Metallodendrimer 7a Crystal Structure of [G0]-Rhomboidal Metallodendrimer 7a 3.3 nm long 2.8 nm wide
[G1]-Rhomboidal Metallodendrimer 7b Crystal Structure of [G1]-Rhomboidal Metallodendrimer 7b 4.2 nm long 2.8 nm wide
Wireframe Representation of the Crystal Structure of Metallodendrimer 7a and 7b 1.3 nm 2.3 nm
Self-Assembly of Hexagonal, “Snowflake-Shaped” Metallodendrimers 10a-d and 11a-d
Partial 1H NMR spectra of 5d, 10d and 11d β α
31P NMR Spectra of [G3]-Hexagonal Metallodendrimer 10d and 11d Compaired with 8 δ (-6.5 ppm) Δ1J PPt = -131 Hz Compaired with 9 δ (-6.4 ppm) Δ1JPPt = -150 Hz
Calculated and Experimental ESI-FT-ICR-MS Spectra of [G0]-[G2]-Hexagonal Metallodendrimers 10a-c Isotope % H 1(100.0%) C 12(98.9%) 13(1.1%) N 14(99.6%) 15(0.4%) O 16(99.8%) 18(0.2%) F 19(100.0%) P 31(100.0%) S 32(95.0%) 33(0.8%) 34(4.2%) Pt 192(0.8%) 194(32.9%) 195(33.8%) 196(25.3%) 198 (7.2%) C282H348F36N12O42P24Pt12S12 C366H420F36N12O54P24Pt12S12 C534H564F36N12O78P24Pt12S12
Full ESI-FT-ICR Mass Spectrum of [G1]-Hexagonal Metallodendrimer 10b
Calculated and Experimental ESI-FT-ICR-MS Spectra of [G0]-[G2]-Hexagonal Metallodendrimers 11a-c Isotope % H 1(100.0%) C 12(98.9%) 13(1.1%) N 14(99.6%) 15(0.4%) O 16(99.8%) 18(0.2%) F 19(100.0%) P 31(100.0%) S 32(95.0%) 33(0.8%) 34(4.2%) Pt 192(0.8%) 194(32.9%) 195(33.8%) 196(25.3%) 198 (7.2%) C390H516F36N12O42P24Pt12S12 C474H588F36N12O54P24Pt12S12 C642H732F36N12O78P24Pt12S12
Space-Filling Models of Hexagonal Metallodendrimers 10d and 11d Optimized with the MM2 Force-Field Simulation
Conclusions This approach makes it possible to prepare a variety of metallodendrimers with well-defined and controlled cavities as cores through the proper choice of subunits with predefined angles and symmetry, which enriches the library of different-shaped cavity-cored metallodendrimers. Metallodendrimers having nonplanar hexagonal cavities with different internal radii of approximately 1.6, 2.5, and 2.9 nm have been obtained. We have demonstrated that highly convergent synthetic protocols of appropriate predetermined building blocks allow the rapid construction of novel cavity-cored metallodendrimers. The shape of the cavities of the supramolecular dendrimers can be rationally designed to be either a rhomboid or a hexagon.
Mechanism of acylation
Mechanism of hydrolysis Hydrolysis of Esters Base-catalysed hydrolysis Mechanism of hydrolysis Step 1 : Reversible attack at carbonyl carbon by base Step 2 : Protion transfer
Mechanism of Sonogashira Coupling organic-chemistry.org
Mechanism of Heck Coupling organic-chemistry.org
Mechanism of Suzuki Coupling organic-chemistry.org