Fig. 7 Seismic reflection data across the NMSZ.

Slides:



Advertisements
Similar presentations
Fig. 4 Altitudinal distributions of ice thickness change (m year−1) for the 650 glaciers. Altitudinal distributions of ice thickness change (m year−1)
Advertisements

Fig. 2 Transport properties of a BP transistor at low temperature.
Fig. 4 Cross sections across-strike and along-strike of the collision zone (for profile locations see Fig. 3). Cross sections across-strike and along-strike.
Fig. 2 Global production, use, and fate of polymer resins, synthetic fibers, and additives (1950 to 2015; in million metric tons). Global production, use,
Fig. 2 CFD results. CFD results. Results of CFD simulations in horizontal (left column) and vertical (right column) cross-sections. All models oriented.
Fig. 3 Vibrational spectra of human bones from the Copper Age (Scoglietto cave, Italy). Vibrational spectra of human bones from the Copper Age (Scoglietto.
Fig. 2 Box plots of water use with lateral lengths.
Vibrational spectra of medieval human bones (Leopoli-Cencelle, Italy)
Fig. 5 Thermal conductivity of n-type ZrCoBi-based half-Heuslers.
Fig. 1 Map of water stress and shale plays.
Fig. 1 Examples of experimental stimuli and behavioral performance.
Fig. 3 Electron PSD in various regions.
Fig. 2 Some examples of weekly forecasts (the number of the forecasts are reported on Table 1). Some examples of weekly forecasts (the number of the forecasts.
Fig. 4 Resynthesized complex boronic acid derivatives based on different scaffolds on a millimole scale and corresponding yields. Resynthesized complex.
Fig. 2 PCA and ADMIXTURE analysis.
HT synthesis of boronic acids using the building block approach
Fig. 6 Comparison of properties of water models.
Fig. 1 Mean and median RCR (Relative Citation Ratio) of Roadmap Epigenomics Program research articles for each year. Mean and median RCR (Relative Citation.
Fig. 2 Influence of the Roadmap Epigenomics Program on the field of epigenomics research. Influence of the Roadmap Epigenomics Program on the field of.
Fig. 2 Reference-fixing experiment, results.
Fig. 3 Glucose- and structure-dependent insulin release.
Fig. 3 Scan rate effects on the layer edge current.
Fig. 2 Stratigraphic profile of the Area 15 excavation block showing the diagnostic cultural materials and components alongside the stratigraphic sequence.
Fig. 3 Rotation experiment, setup.
Fig. 1 Product lifetime distributions for the eight industrial use sectors plotted as log-normal probability distribution functions (PDF). Product lifetime.
Fig. 1 Cryo-EM structure of yeast Elp123 showing its active site.
Fig. 1 Reference-fixing experiment, setup.
Fig. 4 (Top) Upper curves show the total number of words in initial messages, which increases with desirability gap. Lower curves show the fraction of.
Fig. 1 Concept of the livestock transition in China between 1980 and Concept of the livestock transition in China between 1980 and The left-
Fig. 1 Distribution of total and fake news shares.
Fig. 3 Photon number statistics resulting from Fock state |l, S − l〉 interference. Photon number statistics resulting from Fock state |l, S − l〉 interference.
Fig. 2 2D QWs of different propagation lengths.
Fig. 1 Map of the study area including the northwestern end of the Hawaiian Ridge and the southern portion of the ESC. Map of the study area including.
Electronic structure of the oligomer (n = 8) at the UB3LYP/6-31G
Fig. 4 DFT ωB97x/def2-TZVPP atomic charges on the sulfur atom of substituted thioaldehyde and AIMNet prediction with a different number of iterative passes.
Fig. 1 Sectional distributions of pigment concentrations measured along the Mediterranean Sea and in the Eastern Atlantic Ocean. Sectional distributions.
Fig. 1 Histograms of the number of first messages received by men and women in each of our four cities. Histograms of the number of first messages received.
Fig. 5 Schematic phase diagrams of Ising spin systems and Mott transition systems. Schematic phase diagrams of Ising spin systems and Mott transition systems.
Fig. 6 The northern Mississippi embayment.
Fig. 4 OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with different pH. OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with.
Fig. 1 Average contribution (million metric tons) of seafood-producing sectors, 2009–2014. Average contribution (million metric tons) of seafood-producing.
Fig. 4 The mechanical performances of thermally stable click-ionogels.
Fig. 4 Praying Prophet by Lorenzo Monaco: Mapping lake pigments and associated substrate. Praying Prophet by Lorenzo Monaco: Mapping lake pigments and.
Fig. 5 New shale gas and tight oil well installations compared to oil and gas prices. New shale gas and tight oil well installations compared to oil and.
Fig. 2 Schematic drawings of Göbekli Tepe skulls.
Fig. 2 Desirability, quantified using the measures defined here, as a function of demographic variables of the user population. Desirability, quantified.
Fig. 2 NH3, NOx, SO2, and NMVOC emission changes triggered by the JJJ clean air policy. NH3, NOx, SO2, and NMVOC emission changes triggered by the JJJ.
Fig. 1 Size fractions of MPPs in different fertilizers.
Fig. 2 Characterizing the performance of msTENG.
Fig. 1 Global occurrences of hydraulic fracturing–induced seismicity and potential models. Global occurrences of hydraulic fracturing–induced seismicity.
Fig. 2 Top 10 countries, ecoregions, conservation hotspots, and KBAs with the largest area of restoration hotspots. Top 10 countries, ecoregions, conservation.
Fig. 4 Relationships between light and economic parameters.
Fig. 5 Comparison of the liquid products generated from photocatalytic CO2 reduction reactions (CO2RR) and CO reduction reactions (CORR) on two catalysts.
Fig. 5 Skull 1: Tentative reconstruction.
Fig. 1 Location of the Jirzankal Cemetery.
Fig. 4 Map of δ18OVSMOW in groundwaters of the British Isles (left) and Strontium (87Sr/86Sr) biosphere map of Great Britain (right). Map of δ18OVSMOW.
Fig. 4 CO2 emission changes triggered by the JJJ clean air policy.
Fig. 3 Earthquake seismic waves detected in Berkeley.
Fig. 3 Comparisons of NDVI trends over the globally vegetated areas from 1982 to Comparisons of NDVI trends over the globally vegetated areas from.
Fig. 1 Effects of experimental warming on nematode communities across the gradient of plant species richness. Effects of experimental warming on nematode.
Fig. 1 Schematic depiction of a paradigm for rapid and guided discovery of materials through iterative combination of ML with HiTp experimentation. Schematic.
Fig. 4 Mapping of abundance of the most dominant bacterial and archaeal phyla across France. Mapping of abundance of the most dominant bacterial and archaeal.
Fig. 4 Spatial mapping of the distribution and intensity of industrial fishing catch. Spatial mapping of the distribution and intensity of industrial fishing.
Fig. 4 Seismic reflection data in the Venus, Texas, study area.
Fig. 3 Performance of the generative model G, with and without stack-augmented memory. Performance of the generative model G, with and without stack-augmented.
Fig. 4 Behavior of resistance peak near density nm = 5.
Fig. 2 Comparison between the different reflective metasurface proposals when θi = 0° and θr = 70°. Comparison between the different reflective metasurface.
Fig. 2 Spatial distribution of five city groups.
Fig. 3 Calculated electronic structure of ZrCoBi.
Fig. 3 Spatial distribution of the shoot density (high densities are represented in dark green and low ones in bright yellow) in a simulation of a P. oceanica.
Presentation transcript:

Fig. 7 Seismic reflection data across the NMSZ. Seismic reflection data across the NMSZ. (A) Location map of the marine seismic reflection line M6 acquired along the Mississippi River, MO-155 well (orange star), and NMSZ seismicity (green circles). CGF, Cottonwood Grove fault. (B) Unmarked (top) and interpreted (bottom) seismic line M6. The Axial fault and the CGF deform the base of the Quaternary alluvium [marked by the Eocene/Quaternary unconformity (Q/Eo)], Cenozoic, and Mesozoic semi-consolidated sediments to the top of the Ordovician rocks. Vertical displacements increase with age of geologic unit on each fault from ~25 m at the base of the Quaternary to ~40 m at the top of the Cretaceous sediments to ~60 m at the top of the Ordovician rocks, indicating a long-lived history of deformation along both faults throughout the Cenozoic and possibly the Mesozoic (WG, Paleocene-Eocene Wilcox Group; Kr, Upper Cretaceous sediments; Pz, Ordovician sedimentary rocks). (C) Hypocenter locations (green circles) within 10 km of the seismic line projected onto the profile show the Axial fault as a vertical fault that extends to depths of 12 km beneath the seismic line. Focal mechanisms show predominant left-lateral strike-slip movement along the Axial fault. Whether the Axial fault and the Cottonwood Grove faults are two distinct structures at depth or part of a flower strike-slip system is still debated. Maria Beatrice Magnani et al. Sci Adv 2017;3:e1701593 Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).