Initial Estimates and Results of Cell Sizing

Slides:



Advertisements
Similar presentations
Subthreshold SRAM Designs for Cryptography Security Computations Adnan Gutub The Second International Conference on Software Engineering and Computer Systems.
Advertisements

Magnetoelectric Random Access Memory (MeRAM)
COEN 180 SRAM. High-speed Low capacity Expensive Large chip area. Continuous power use to maintain storage Technology used for making MM caches.
Prefetching Techniques for STT-RAM based Last-level Cache in CMP Systems Mengjie Mao, Guangyu Sun, Yong Li, Kai Bu, Alex K. Jones, Yiran Chen Department.
Semiconductor Memory Design. Organization of Memory Systems Driven only from outside Data flow in and out A cell is accessed for reading by selecting.
Electrical machine1 J 2006 Transformer Device that changes Electrical energy into magnetic energy Device that changes Electrical energy into.
STT-RAM as a sub for SRAM and DRAM
Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University Memory See: P&H Appendix C.8, C.9.
SRAM Mohammad Sharifkhani. Effect of Mismatch.
Semiconductor Memories ECE423 Xiang Yu RAM vs. ROM  Volatile  RAM (random access) SRAM (static) SRAM (static) SynchronousSynchronous AsynchronousAsynchronous.
1 Timing in HCAL Digitization Rick Wilkinson. 2 Timing We should try to maximize charge in time bin 5, for high energy (no time slew) We should try to.
Device Sizing Techniques for High Yield Minimum-Energy Subthreshold Circuits Dan Holcomb and Mervin John University of California, Berkeley EE241 Spring.
Static Memory Outline –Types of Static Memory –Static RAM –Battery Backup –EPROM –Flash Memory –EEPROM Goal –Understand types of static memory –Understand.
Effects of Variation on Emerging Devices for Use in SRAM
TOWARDS AN EARLY DESIGN SPACE EXPLORATION TOOL SET FOR STT-RAM DESIGN Philip Asare and Ben Melton.
Cells By: Aspen Pennington.
Low Power via Sub-Threshold Circuits Mike Pridgen.
© 2000 Morgan Kaufman Overheads for Computers as Components System components  Timing diagrams.  Memory.  Busses and interconnect.
Memory Devices on DE2-115 數位電路實驗 TA: 吳柏辰 Author: Trumen.
Electrical Circuits. Electrical Circuit Closed path through which charge can flow A Circuit needs: 1.Source of energy (voltage) 2.Conductive path for.
Magnetic Random Access Memory Jonathan Rennie, Darren Smith.
Outline Introduction - Ultra Low Power (ULP) CBRAM technology
Status of the ETL 9125FLB Photomultiplier Tubes Steve Bache UNC-Wilmington.
Low-Power BIST (Built-In Self Test) Overview 10/31/2014
Tera-Pixel APS for CALICE Progress meeting, 6 th June 2006 Jamie Crooks, Microelectronics/RAL.
Seok-jae, Lee VLSI Signal Processing Lab. Korea University
EE141 Project: 32x32 SRAM Abhinav Gupta, Glen Wong Optimization goals: Balance between area and performance Minimize area without sacrificing performance.
Click to edit Master title style Progress Update Energy-Performance Characterization of CMOS/MTJ Hybrid Circuits Fengbo Ren 05/28/2010.
What we will do today: Give examples of input devices.
Click to edit Master title style STT-RAM Circuit Design Column Circuitry Simulation (IBM 45nm SOI) Fengbo Ren.
12 June 2016 Slide 1 2 s 2.org Vmin Estimate Model 50K-point IS o/□/Δ MC
STT-RAM Circuit Design
Electric Current and Electrical Energy Current Electric current is the rate at which charges pass a given point An electric current can be made.
STT-RAM Feasibility Study Amr Amin UCLA Jan 2010.
The LEP Superconducting RF system has reached its maximum configuration of 288 four-cell cavities powered by 36 klystrons in In 2000, this system,
Modeling of Failure Probability and Statistical Design of Spin-Torque Transfer MRAM (STT MRAM) Array for Yield Enhancement Jing Li, Charles Augustine,
Magnetoresistive Random Access Memory (MRAM)
EE201C: Winter 2012 Introduction to Spintronics: Modeling and Circuit Design Richard Dorrance Yuta Toriyama.
MTJ Design Space Design Space v3.
Alireza Shafaei, Shuang Chen, Yanzhi Wang, and Massoud Pedram
On-Chip ECC for Low-Power SRAM Design
Short Pulse Reading for STT-RAM
Low Write-Energy STT-MRAMs using FinFET-based Access Transistors
A Review of MTJ Compact Models
Voltage.
EE201C Modeling of VLSI Circuits and Systems Final Project
Add your team’s summary here followed by your initials Add your team’s summary here followed by your initials. Remember to rotate the person.
Development and Characterization of STT-RAM Cells
Amr Amin Preeti Mulage UCLA CKY Group
نگرشي بر جريان نوظهور معنويت گرا
EE201C Modeling of VLSI Circuits and Systems Final Project
Memory Devices on DE2-115 Digital Circuit Lab TA: Po-Chen Wu.
حافظه و منطق قابل برنامه ریزی
SA2002 Test conditions: V out0= 4.7 V out1= 5 V I out 0/1= 1.9 A.
Amr Amin Preeti Mulage UCLA CKY Group
STT-MRAM Tapeouts: IBM 65nm & IBM 45nm SOI
Introduction to I/O PAD
Literature Review Scalable Spin-Transfer Torque RAM Technology for Normally-Off Computing T. Kawahara Richard Dorrance July 13, 2012.
Modeling and Design of STT-MRAMs
Read Delay Simulations
Z6 experiments and necessary beam parameters
Compact Modeling of MTJs for use in STT-MRAM
STT-RAM Circuit Design
500 nm WRITE VOLTAGE 0 V.
STT-RAM Design Fengbo Ren Advisor: Prof. Dejan Marković Dec. 3rd, 2010
Literature Review A Nondestructive Self-Reference Scheme for Spin-Transfer Torque Random Access Memory (STT-RAM) —— Yiran Chen, et al. Fengbo Ren 09/03/2010.
NEGATIVE VOLTAGE POSITIVE.
Closed Session CMOS Circuit Development Update Investigators: C.K. Ken Yang Dejan Markovic Students: A. Amin,
财务管理案例教学法 研究及示例 ——王遐昌 2006/11/10.
Increasing MTJ Density
Presentation transcript:

Initial Estimates and Results of Cell Sizing STT-RAM Project Initial Estimates and Results of Cell Sizing

Expected MTJ Parameters (Ilya/Pedram) I-STT RP ≈ 500-700Ω TMR ≈ 100-120% Lowest write energy: VWRITE ≈ 0.6-1V tPULSE ≈ 1-5ns C-STT RP ≈ 600-800Ω TMR ≈ 30-50% VWRITE ≈ 1.2-2.0V tPULSE ≈ 0.2-0.5ns

Reference SRAM Cell For IBM65: F = 0.1μm SRAM Size: 0.625μm2 = 62.5F2

STT-RAM Cell Sizing For a 2 finger device, cell area is approx: 0.61μm x (WFINGER + 0.2μm) 50F2 → 620nm/50nm x2 35F2 → 380nm/50nm x2 25F2 → 220nm/50nm x2 27.5 F2 (OLD CELLS) 52.5 F2

I-STT Results for “Balanced” Voltage VWL = 1.0V VDD = 1V; RP ≈ 500-700Ω; TMR ≈ 100-120% VWL = 1.2V (15-40% increase in IWRITE/VWRITE)   IAP→P [μA] IP→AP [μA] 50F2 230-310 760-820 35F2 200-250 520-540 25F2 160-190 320-330   VAP→P [mV] VP→AP [mV] 50F2 300-350 410-540 35F2 250-300 270-360 25F2 190-240 160-220   IAP→P [μA] IP→AP [μA] 50F2 300-410 950-1100 35F2 260-340 690-730 25F2 210-260 430-450   VAP→P [mV] VP→AP [mV] 50F2 410-470 540-667 35F2 360-480 340-410 25F2 260-330 220-300

I-STT Results for “Balanced” Current VWL = 1.0V VDD = 1V; RP ≈ 500-700Ω; TMR ≈ 100-120% VWL = 1.2V (15-40% increase in IWRITE/VWRITE)   IAP→P [μA] IP→AP [μA] 50F2 520-680 380-460 35F2 430-490 300-350 25F2 290-310 220-250   VAP→P [mV] VP→AP [mV] 50F2 680-800 230-260 35F2 490-660 175-210 25F2 310-450 120-160   IAP→P [μA] IP→AP [μA] 50F2 550-770 510-620 35F2 490-620 410-480 25F2 380-420 300-340   VAP→P [mV] VP→AP [mV] 50F2 770-850 310-360 35F2 620-750 240-290 25F2 420-580 170-210

C-STT Results for “Balanced” Voltage VWL = 1.0V VDD = 1V; RP ≈ 600-800Ω; TMR ≈ 30-50% VWL = 1.2V (15-40% increase in IWRITE/VWRITE)   IAP→P [μA] IP→AP [μA] 50F2 270-360 740-800 35F2 230-290 510-530 25F2 180-210 315-325   VAP→P [mV] VP→AP [mV] 50F2 280-330 480-590 35F2 220-270 320-410 25F2 170-220 200-250   IAP→P [μA] IP→AP [μA] 50F2 360-480 890-1020 35F2 310-390 670-710 25F2 240-290 430-440   VAP→P [mV] VP→AP [mV] 50F2 380-440 610-710 35F2 300-370 430-540 25F2 230-290 270-340

C-STT Results for “Balanced” Current VWL = 1.0V VDD = 1V; RP ≈ 600-800Ω; TMR ≈ 30-50% VWL = 1.2V (15-40% increase in IWRITE/VWRITE)   IAP→P [μA] IP→AP [μA] 50F2 610-740 350-410 35F2 470-510 290-330 25F2 300-320 210-230   VAP→P [mV] VP→AP [mV] 50F2 580-740 250-280 35F2 400-560 200-230 25F2 250-370 140-170   IAP→P [μA] IP→AP [μA] 50F2 670-900 480-560 35F2 570-670 390-440 25F2 400-430 290-320   VAP→P [mV] VP→AP [mV] 50F2 700-800 340-380 35F2 530-680 270-310 25F2 330-480 190-230