Control circuit for a servo targeting scheme (eg, Proportional Assist Ventilation). Control circuit for a servo targeting scheme (eg, Proportional Assist.

Slides:



Advertisements
Similar presentations
Effect of nasal positive expiratory pressure (PEP) on 6-min walk test (6MWT) distance and pre- to post-exercise increase in lung volumes in each individual.
Advertisements

The patient is being ventilated with 2 types of breaths.
The changes in peak flow and inspiratory time between a minimum rise time (first 2 breaths) and a maximum rise time (last 2 breaths), with the Servo-i.
Airway pressure and flow waveforms during constant flow volume control ventilation, illustrating the effect of an end-inspiratory breath-hold. Airway pressure.
Trigger pressure-time product (PTP) with zero pressure support, with no leak, medium leak, and large leak. Trigger pressure-time product (PTP) with zero.
Example ventilator screen during nasal neurally adjusted ventilatory assist in a premature neonate (23 weeks gestational age, 560 g) with respiratory distress.
Matrix used to calculate the kappa statistic.
Lung simulator diagram of airway pressure release ventilation (APRV): volume (yellow), lung pressure (white), and flow (orange)/time curve. Lung simulator.
Trigger delays and leaks.
The Spectrum mask incorporates the leak port into the circuit, whereas the Mirage mask incorporates the leak port into the mask. The Spectrum mask incorporates.
Shape-signal method of triggering combines shape signal (A) and volume (B) methods of triggering. Shape-signal method of triggering combines shape signal.
Even though this patient is undergoing positive-pressure mechanical ventilation, the first 4 breaths have a relatively negative pressure (ie, pressure.
Noninvasive ventilation-neurally adjusted ventilatory assist (NIV-NAVA) where each patient effort is captured but support is insufficient (maximum electrical.
A: Pressure (green) and volume (black)/time curve in airway pressure release ventilation (APRV). A: Pressure (green) and volume (black)/time curve in airway.
An example of delayed cycling during pressure-support ventilation of a patient with COPD, on a Puritan Bennett 7200 ventilator, which has a flow-termination.
The third breath has a negative deflection (ie, below PEEP) at the end of the mechanical breath (arrow A) associated with a flow increase (arrow B), indicating.
Likert-scale agreement ratings regarding the use of extubation readiness parameters by pediatric critical care physicians. Likert-scale agreement ratings.
Example airway pressure and rib-cage impedance in a premature infant supported with the biphasic mode of SiPAP (“sigh” positive airway pressure) from the.
Simulated screenshot of flow starvation in volume control continuous mandatory ventilation. Simulated screenshot of flow starvation in volume control continuous.
The peak flows (60 L/min) and flow patterns are the same for all the breaths. The peak flows (60 L/min) and flow patterns are the same for all the breaths.
During this tracing of 30 seconds, the ventilator displays that the patient rate is 16 breaths/min. During this tracing of 30 seconds, the ventilator displays.
Comparison of airway pressure release ventilation (APRV) (blue curve) and biphasic positive airway pressure (BIPAP) (black curve). Comparison of airway.
A: Machine-triggered intermittent mandatory ventilation (IMV) with inadequate patient triggering of mandatory breaths. A: Machine-triggered intermittent.
Interactions among clinician, patient, and ventilator.
Trigger and synchronization windows.
Pressure, flow, volume, and electrical activity of the diaphragm (EAdi) waveforms from a patient on pressure support ventilation, and the presumed pressure.
Pressure, flow, volume, and electrical activity of the diaphragm (EAdi) waveforms from a patient on pressure support ventilation, and the presumed pressure.
In this tracing of 30 seconds, 4 breaths are ineffectively triggered (arrows IT) and 7 are effectively triggered. In this tracing of 30 seconds, 4 breaths.
A 2-min recording showing periodic breathing, stable delivered pressure, and fluctuating oxygen saturation in a premature neonate supported by nasal intermittent.
Ineffective efforts and operation of apnea ventilation during pressure control continuous spontaneous ventilation (PC-CSV). Ineffective efforts and operation.
Asynchrony index (%) during invasive and noninvasive ventilation (NIV) relative to leak level. Asynchrony index (%) during invasive and noninvasive ventilation.
This tracing depicts 30 seconds of information.
Graphic representation of a dynamic airway pressure scalar during volume control ventilation with a constant inspiratory flow. Graphic representation of.
Work rate as a function of pressurization rate and cycling-off threshold, during pressure-support ventilation of (A) patients with acute lung injury (ALI),
Schematic drawing of alveolar sizes at upper (A), middle (B), and lower dependent (C) lung regions at end expiration and end inspiration. Schematic drawing.
Effect of respiratory mechanics on cycling of pressure support from inhalation to exhalation. Effect of respiratory mechanics on cycling of pressure support.
Flow, esophageal pressure, airway pressure, and transpulmonary pressure can be used to calculate respiratory system compliance, chest-wall compliance,
We connected the supplemental oxygen supply at 3 places: near the ventilator, near the exhalation valve, and on the nasal mask port. We connected the supplemental.
Control circuit for an adaptive pressure targeting scheme (eg, Pressure Regulated Volume Control). Control circuit for an adaptive pressure targeting scheme.
Blom speech cannula. Blom speech cannula. Inspiratory pressure opens the flap valve and closes (expands) the bubble valve, sealing the fenestration so.
Carbon monoxide (CO) delivery system used in animal models and Phase 1 clinical trials. Carbon monoxide (CO) delivery system used in animal models and.
Control circuit for set-point or dual targeting schemes.
Study protocol. Study protocol. Subjects with hemodynamic, respiratory, and neurologic stability and positive predictive index were randomized to 3 groups.
Assembly used to convert a standard ventilator to an intermittent mandatory ventilation circuit. Assembly used to convert a standard ventilator to an intermittent.
Venn diagram illustrating how the mode taxonomy can be viewed in terms of discriminating features and defining features. Venn diagram illustrating how.
The cause of asynchrony during volume-targeted ventilation and total asynchrony index. The cause of asynchrony during volume-targeted ventilation and total.
Graphical representation of the locations where spontaneous breaths may occur during the airway pressure (Paw) release ventilation ventilatory cycle. Graphical.
Mean inspiratory work of breathing during assisted breaths and spontaneous breaths across the spectrum of ventilatory support continuous mandatory ventilation.
Flow, airway pressure, and transversus abdominis electromyogram (EMG) waveforms from a mechanically ventilated patient with COPD receiving pressure-support.
Schematic of mechanisms behind the better recruitment of alveoli with spontaneous breathing. Schematic of mechanisms behind the better recruitment of alveoli.
Plots of alveolar PO2, hemoglobin saturation, and alveolar PCO2 as a function of alveolar ventilation in a normal subject at sea level (inspired oxygen.
Components of a patient-triggered mechanical breath.
FEV1 and FVC for the control group (without noninvasive ventilation [NIV]), NIV with an inspiratory pressure (IPAP) of 15 cm H2O and expiratory pressure.
Determinants of patient-ventilator interaction.
Physical variables affecting FIO2 of nasal cannula with increasing breathing frequency (f), at flows from 1–5 L/min. Physical variables affecting FIO2.
Correlation between maximum inspiratory pressure and inspiratory load compensation (ILC) ventilatory variables in the 16 difficult-to-wean subjects, prior.
Relationship of mouth pressure (Pmo) and box pressure (Pbox) by body plethysmography under closed–loop panting conditions (left) and open-loop panting.
Ventilation protocol. Ventilation protocol. The PEEP group raised peak inspiratory pressure (PIP) through 5-cm H2O PEEP increments every 2 min while keeping.
Tidal volume (VT) error (% difference between set and actual values) was determined for each ventilator at VT of 300, 500, and 700 mL. Tidal volume (VT)
The changes in peak flow and inspiratory time between a minimum rise time (first 2 breaths) and a maximum rise time (last 2 breaths), with the Servo-i.
Representative tidal volume (VT) and breathing frequency (f) patterns of subjects with COPD and normal subjects during cardiopulmonary exercise testing.
Experimental setup. Experimental setup. Each tested ventilator was connected to the TTL test lung via a ventilator circuit. An oxygen analyzer, a pressure.
Progression of spontaneous breathing trials administered during inspiratory muscle strength training study interventions. Progression of spontaneous breathing.
For inspiratory load compensation testing, this threshold positive expiratory pressure (PEP) training device was inverted and connected to a respiratory.
Enhancing flow synchrony with a variable flow, pressure-targeted breath. Enhancing flow synchrony with a variable flow, pressure-targeted breath. In the.
Difference between mid-frequency ventilation (MFV), volume control continuous mandatory ventilation (VC-CMV), and pressure control CMV (PC-CMV) when frequency.
Basic setup for high-flow nasal cannula oxygen delivery.
Fentenyl and lorazepam use for the first 5 d of ventilatory support are presented. Fentenyl and lorazepam use for the first 5 d of ventilatory support.
Minute-by-minute means of breathing variables during the spontaneous breathing trial for the groups of subjects with trial success (n = 32) and failure.
Effects of an automated endotracheal-tube-compensation system on a pressure-support breath. Effects of an automated endotracheal-tube-compensation system.
Presentation transcript:

Control circuit for a servo targeting scheme (eg, Proportional Assist Ventilation). Control circuit for a servo targeting scheme (eg, Proportional Assist Ventilation). The controller is designed so that inspiratory pressure as a function of time (P(t)) is proportional to both volume as a function of time (V(t)) and flow as a function of time (V̇(t)). The constant of proportionality K1 represents the amount of elastance to be supported. The constant of proportionality K2 represents the amount of resistance to be supported. Robert L Chatburn, and Eduardo Mireles-Cabodevila Respir Care 2011;56:85-102 (c) 2012 by Daedalus Enterprises, Inc.