Loek J. Eggermont, Leonie E. Paulis, Jurjen Tel, Carl G. Figdor 

Slides:



Advertisements
Similar presentations
Advances in shaking technologies Wolf Klöckner, Jochen Büchs Trends in Biotechnology Volume 30, Issue 6, Pages (June 2012) DOI: /j.tibtech
Advertisements

Cancer Metabolism Cell Volume 148, Issue 3, (February 2012) DOI: /j.cell Copyright © 2012 Terms and Conditions Terms and Conditions.
Ex Vivo Gene Therapy Using Patient iPSC-Derived NSCs Reverses Pathology in the Brain of a Homologous Mouse Model Tagan A. Griffin, Hayley C. Anderson,
The Microbiome and Cancer: Is the ‘Oncobiome’ Mirage Real? Ryan M. Thomas, Christian Jobin Trends in Cancer Volume 1, Issue 1, Pages (September 2015)
The Fall of Oil Prices and the Effects on Biofuels Fernando H. Reboredo, Fernando Lidon, Fernanda Pessoa, José C. Ramalho Trends in Biotechnology Volume.
Differential drug responses of circulating tumor cells within patient blood Andrew D. Hughes, Jocelyn R. Marshall, Eric Keller, John D. Powderly, Bryan.
Intelligent software for laboratory automation
David P. Carbone, MD, PhD, David R. Gandara, MD, Scott J
Socializing Individualized T-Cell Cancer Immunotherapy
Rachel Wynberg, Sarah A. Laird  Trends in Biotechnology 
Immunotherapy of hepatocellular carcinoma
Slit-Robo Cancer Cell Volume 4, Issue 1, Pages 1-2 (July 2003)
Immunoengineering: How Nanotechnology Can Enhance Cancer Immunotherapy
Advances in Specific Immunotherapy for Prostate Cancer
Some early Trends in Immunology
Mazaher Gholipourmalekabadi, Susan Zhao, Benjamin S
Gut Microbiota: A Natural Adjuvant for Vaccination
Jagadeesh Bayry, Jean-François Gautier  Cell Metabolism 
Toll-like Receptors Keep Antigen Sorting on the Right Track
Mechanisms of Drug-Induced Allergy
Can We Get Rid of Palm Oil?
Cell signaling and cancer
David P. Carbone, MD, PhD, David R. Gandara, MD, Scott J
HLA-A*0201+ Plasmacytoid Dendritic Cells Provide a Cell-Based Immunotherapy for Melanoma Patients  Caroline Aspord, Marie-Therese Leccia, Dimitri Salameire,
Volume 21, Issue 6, Pages (December 2017)
Philippe Bousso, Ellen A. Robey  Immunity 
A Flt3L Encounter: mTOR Signaling in Dendritic Cells
Volume 20, Issue 1, Pages (January 2017)
Gene therapy in haematology and oncology
Nat. Rev. Rheumatol. doi: /nrrheum
Cellular Mechanisms of Fatal Early-Onset Autoimmunity in Mice with the T Cell-Specific Targeting of Transforming Growth Factor-β Receptor  Julien C. Marie,
Immune Checkpoint Immunotherapy for Non-Small Cell Lung Cancer
Targets for immunotherapy of liver cancer
In Vivo Role of Vitamin D Receptor Signaling in UVB-Induced DNA Damage and Melanocyte Homeostasis  Sharmeen Chagani, Sergiy Kyryachenko, Yoko Yamamoto,
Vitor B. Pinheiro, Philipp Holliger  Trends in Biotechnology 
Location, Location, Location: The Cancer Stem Cell Niche
Lino Ferreira, Jeffrey M. Karp, Luis Nobre, Robert Langer 
Xiuyan Wang, Isabelle Rivière  Molecular Therapy - Oncolytics 
Pattern Recognition Receptors
Some early Trends in Immunology
Tilo Biedermann, Martin Röcken, José M. Carballido 
Volume 3, Issue 5, Pages (May 2003)
Research Techniques Made Simple: CAR T-Cell Therapy
Confusing signals: Recent progress in CTLA-4 biology
Volume 130, Issue 6, (September 2007)
TIGIT and CD226: Tipping the Balance between Costimulatory and Coinhibitory Molecules to Augment the Cancer Immunotherapy Toolkit  Kristen E. Pauken,
The Pharmacology of T Cell Therapies
Immunological Synapse: Center of Attention Again
Franco Locatelli, Damiano Rondelli, G.Roberto Burgio 
Sustained release of milrinone delivered via microparticles in a rodent model of myocardial infarction  Hamood Al Kindi, MD, Arghya Paul, PhD, Zhipeng.
Dietary Fat Inflames CD4+ T Cell Memory in Obesity
CRISPR/Cas9: A Potential Life-Saving Tool. What’s next?
Volume 21, Issue 8, Pages (August 2013)
Unjustified regulation prevents use of GMO technology for public good
NO Signals from the Cancer Stem Cell Niche
Speaking from the Heart: Systemic Copper Signaling
Annika Berntsen, Poul F. Geertsen, Inge Marie Svane  European Urology 
Binding Affinity and Interaction of LL-37 with HLA-C
Tackling Cancer with Yeast-Based Technologies
Nicholas S. McCarty, Rodrigo Ledesma-Amaro  Trends in Biotechnology 
A-Andrew D. Jones, Gujie Mi, Thomas J. Webster  Trends in Biotechnology 
Volume 83, Issue 4, Pages (April 2013)
Toward a B-cell signature of tolerance?
Releasing the Brakes on Cancer Immunotherapy
T cells and T-cell receptors in acute renal failure
Padmanee Sharma, James P. Allison  Cell 
Luc Van Kaer, Sebastian Joyce  Immunity 
Microbials for the production of monoclonal antibodies and antibody fragments  Oliver Spadiut, Simona Capone, Florian Krainer, Anton Glieder, Christoph.
Volume 134, Issue 6, (September 2008)
Ibrutinib Treatment of CLL: The Cancer Fights Back
Presentation transcript:

Towards efficient cancer immunotherapy: advances in developing artificial antigen- presenting cells  Loek J. Eggermont, Leonie E. Paulis, Jurjen Tel, Carl G. Figdor  Trends in Biotechnology  Volume 32, Issue 9, Pages 456-465 (September 2014) DOI: 10.1016/j.tibtech.2014.06.007 Copyright © 2014 The Authors Terms and Conditions

Figure 1 Different strategies for active cancer immunotherapy. T cell activation can be induced either ex vivo or in vivo by autologous dendritic cells (DCs; blue arrows) or artificial antigen-presenting cells (aAPCs; red arrows), or by engineering of T cells through transgenic delivery of T cell receptors (TCRs; green arrow) and lifetime engineering, for example using small-molecule inhibitors (red diamonds). Ex vivo-activated autologous T cells can be adoptively transferred into patients (grey arrows) to specifically kill cancer cells. Alternatively, injection of APCs can lead to in vivo aAPC immunotherapy without the need for autologous cell cultures (red arrows). Trends in Biotechnology 2014 32, 456-465DOI: (10.1016/j.tibtech.2014.06.007) Copyright © 2014 The Authors Terms and Conditions

Figure 2 Different types of synthetic artificial antigen-presenting cells (aAPCs). (A) Rigid spherical particles: 1, polystyrene latex microbeads; 2, magnetic nano- and microparticles; 3, nanosized quantum dots; and 4, poly(lactic-co-glycolic acid) (PLGA) microspheres. (B) Nonspherical particles: 5, carbon nanotube bundles; 6, ellipsoid PLGA microparticles; and 7, nanoworms. (C) Fluidic lipid bilayer-containing systems: 8, 2D-supported lipid bilayers (2D-SLBs); 9, liposomes; 10, RAFTsomes/microdomain liposomes; and 11, SLB particles. Trends in Biotechnology 2014 32, 456-465DOI: (10.1016/j.tibtech.2014.06.007) Copyright © 2014 The Authors Terms and Conditions

Figure I Different signals leading to induction of T cell activation and expansion. Trends in Biotechnology 2014 32, 456-465DOI: (10.1016/j.tibtech.2014.06.007) Copyright © 2014 The Authors Terms and Conditions