Fig. 2 Electron backscattered (BSE) characteristic images of craters generated by hypervelocity impact experiments on the Gibeon iron meteorite target.

Slides:



Advertisements
Similar presentations
Fig. 2 Nonlinearities in a cavity-embedded perovskite single crystal.
Advertisements

Fig. 5 Correlation of RNA expression and protein abundance.
Fig. 4 Altitudinal distributions of ice thickness change (m year−1) for the 650 glaciers. Altitudinal distributions of ice thickness change (m year−1)
Fig. 4 3D reconfiguration of liquid metals for electronics.
Fig. 5 MicroLED array with 3D liquid metal interconnects.
Fig. 2 Transport properties of a BP transistor at low temperature.
Fig. 2 Reconfiguration of liquid metals into 3D structures.
Fig. 4 Ballistic simulation of BP FETs.
Fig. 3 The electrical contact of direct-printed and reconfigured liquid metals. The electrical contact of direct-printed and reconfigured liquid metals.
Fig. 2 Global production, use, and fate of polymer resins, synthetic fibers, and additives (1950 to 2015; in million metric tons). Global production, use,
Fig. 2 CFD results. CFD results. Results of CFD simulations in horizontal (left column) and vertical (right column) cross-sections. All models oriented.
Fig. 1 Precursor suspensions for spin coating and the obtained monolayer films. Precursor suspensions for spin coating and the obtained monolayer films.
Fig. 5 Thermal conductivity of n-type ZrCoBi-based half-Heuslers.
Fig. 1 Map of water stress and shale plays.
Fig. 1 Examples of experimental stimuli and behavioral performance.
Fig. 3 Saturation velocity of BP FETs.
Fig. 4 Resynthesized complex boronic acid derivatives based on different scaffolds on a millimole scale and corresponding yields. Resynthesized complex.
Fig. 2 Reference-fixing experiment, results.
Fig. 1 Experimental apparatus used to train and test free-flying bees on their capacity to learn addition and subtraction. Experimental apparatus used.
Fig. 2 Stratigraphic profile of the Area 15 excavation block showing the diagnostic cultural materials and components alongside the stratigraphic sequence.
Fig. 3 Rotation experiment, setup.
Fig. 1 Product lifetime distributions for the eight industrial use sectors plotted as log-normal probability distribution functions (PDF). Product lifetime.
Fig. 1 Reference-fixing experiment, setup.
Fig. 1 Distribution of total and fake news shares.
Fig. 3 Characteristics of UV and temperature sensors.
Fig. 2 2D QWs of different propagation lengths.
Fig. 5 Molecular dynamics simulations of Rac1.
Electronic structure of the oligomer (n = 8) at the UB3LYP/6-31G
Fig. 6 WPS imaging of different chemical components in living cells.
Fig. 4 DFT ωB97x/def2-TZVPP atomic charges on the sulfur atom of substituted thioaldehyde and AIMNet prediction with a different number of iterative passes.
Fig. 1 Architecture of the AIMNet model.
Fig. 3 ET dynamics on the control and treatment watersheds during the pretreatment and treatment periods. ET dynamics on the control and treatment watersheds.
Fig. 1 Histograms of the number of first messages received by men and women in each of our four cities. Histograms of the number of first messages received.
Fig. 5 Schematic phase diagrams of Ising spin systems and Mott transition systems. Schematic phase diagrams of Ising spin systems and Mott transition systems.
Characteristics of ultrathin single-crystalline semiconductor films
Fig. 4 OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with different pH. OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with.
Fig. 1 Average contribution (million metric tons) of seafood-producing sectors, 2009–2014. Average contribution (million metric tons) of seafood-producing.
Fig. 4 Praying Prophet by Lorenzo Monaco: Mapping lake pigments and associated substrate. Praying Prophet by Lorenzo Monaco: Mapping lake pigments and.
Fig. 1 Structure and absorption spectra of the P
Fig. 2 Results of the learning and testing phases.
Contrast agent uptake for the four different groups of MMA mice
Fig. 3 Production of protein and Fe(II) at the end of growth correlated with increasing concentrations of ferrihydrite in the media that contained 0.2.
Fig. 4 Generation of liquid products on metal-decorated Ni(TPA/TEG) composites. Generation of liquid products on metal-decorated Ni(TPA/TEG) composites.
Fig. 2 NH3, NOx, SO2, and NMVOC emission changes triggered by the JJJ clean air policy. NH3, NOx, SO2, and NMVOC emission changes triggered by the JJJ.
Fig. 1 Global occurrences of hydraulic fracturing–induced seismicity and potential models. Global occurrences of hydraulic fracturing–induced seismicity.
Fig. 2 Top 10 countries, ecoregions, conservation hotspots, and KBAs with the largest area of restoration hotspots. Top 10 countries, ecoregions, conservation.
Fig. 5 Comparison of the liquid products generated from photocatalytic CO2 reduction reactions (CO2RR) and CO reduction reactions (CORR) on two catalysts.
Schematic of the proposed brain-controlled assistive hearing device
Fig. 1 Global distribution of surface DIP.
Fig. 1 Location of the Jirzankal Cemetery.
Fig. 4 CO2 emission changes triggered by the JJJ clean air policy.
Fig. 3 Directional rolling of an NP on a dsDNA fragment with flexibility gradient. Directional rolling of an NP on a dsDNA fragment with flexibility gradient.
Fig. 2 Simulations of possible doping positions and band structures.
Multiplexed four- and eight-channel devices for rapid processing
Fig. 2 Mean field results. Mean field results. (A) Solutions P(x) to Eq. 4 for a range of T and wc = (B) Modulus ∣pk∣ of order parameters versus.
Fig. 6 Stabilization of hippocampal signaling over sleep.
Fig. 1 Effects of experimental warming on nematode communities across the gradient of plant species richness. Effects of experimental warming on nematode.
Fig. 1 Schematic depiction of a paradigm for rapid and guided discovery of materials through iterative combination of ML with HiTp experimentation. Schematic.
Fig. 4 Spatial mapping of the distribution and intensity of industrial fishing catch. Spatial mapping of the distribution and intensity of industrial fishing.
Fig. 4 Single-particle contact angle measurements.
Fig. 1 Ultrathin, stretchable, mechanically imperceptible, multifunctional HMI device for human and robotics. Ultrathin, stretchable, mechanically imperceptible,
Fig. 2 Relaxation to a fitness maximum does not generate a logarithmic fitness trajectory. Relaxation to a fitness maximum does not generate a logarithmic.
Fig. 2 Latitudinal changes in the sea-ice drivers.
Fig. 3 Supraballs and films assembled from binary 219/217nm SPs/SMPs.
Fig. 2 Supraballs and films from binary SPs.
Fig. 3 Performance of the generative model G, with and without stack-augmented memory. Performance of the generative model G, with and without stack-augmented.
Fig. 4 Behavior of resistance peak near density nm = 5.
Fig. 2 Comparison between the different reflective metasurface proposals when θi = 0° and θr = 70°. Comparison between the different reflective metasurface.
Fig. 1 Doping schematics and optical properties.
Fig. 3 Calculated electronic structure of ZrCoBi.
Presentation transcript:

Fig. 2 Electron backscattered (BSE) characteristic images of craters generated by hypervelocity impact experiments on the Gibeon iron meteorite target chunks using both dunite and basalt projectiles. Electron backscattered (BSE) characteristic images of craters generated by hypervelocity impact experiments on the Gibeon iron meteorite target chunks using both dunite and basalt projectiles. (A) #101 dunite at 3.25 km/s at room temperature. The crater’s morphology is a typical bowl-like shape with a clear darkening of its interior. Notice that the crater’s metallic rims are irregular and largely protruding. (B) #102 dunite at 3.28 km/s at 151 K. This bowl-like shape crater is obtained in the same experimental conditions than run #101, but the dwell target temperature was set at 151 K. Similar features are observable, except the tearing off part of the crater wall on its left part (see section S6). (C) #103 dunite at 6.97 km/s at room temperature. This is the higher-velocity impact crater obtained with a dunite projectile. Its interior consists of a frozen emulsion of metal-silicate immiscible liquids. (D) #107 basalt at 5.08 km/s at 131 K. The darkening of the inside of the crater is more pronounced than in the other impact experiments using dunite as a projectile. Concentric cracks are also present. (E) Electron backscattered SEM image showing the dunite-like glassy coating (pink) of the run #103 iron crater surface (green) on its sides. The glassy coating contains numerous bubbles. (F) Electron backscattered SEM image showing the basalt-like glassy coating (pink) of the #107 crater. Notice here the heterogeneous thickness of the glassy coating and its foamy texture (iron-rich materials are in green). Guy Libourel et al. Sci Adv 2019;5:eaav3971 Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).