MQXFS6 assembly and loading Eelis Takala on behalf of the MQXF collaboration 22/02/2018 CERN
Acknowledgments CERN US Accelerator Upgrade Project (AUP) A. Ballarino, H. Bajas, M. Bajko, B. Bordini, N. Bourcey, J.C. Perez, S. Izquierdo Bermudez, S. Ferradas Troitino, L. Fiscarelli, J. Fleiter, M. Guinchard, O. Housiaux, F. Lackner, F. Mangiarotti, A. Milanese, P. Moyret, H. Prin, R. Principe, E. Ravaioli, T. Sahner, S. Sequeira Tavares, E. Takala, E. Todesco US Accelerator Upgrade Project (AUP) BNL: M. Anerella, P. Joshi, J. Muratore, J. Schmalzle, P. Wanderer FNAL: G. Ambrosio, M. Baldini, J. Blowers, R. Bossert, G. Chlachidze, L. Cooley, S. Krave, F. Nobrega, V. Marinozzi, I. Novitsky, C. Santini, S. Stoynev, T. Strauss, M. Yu LBNL: E. Anderssen, D. Cheng, M. Marchevsky, H. Pan, I. Pong, S. Prestemon, G. Sabbi, G. Vallone, X. Wang NHMFL: Lance Cooley Paolo Ferracin Paolo Ferracin
MQXFS6 Coil Size Coil Max(um) Min(um) Mean(um) Assumed(um) 208 151 -38 64 50 209 -113 -227 -174 -150 210 34 -59 -15 212 -5 -61 -50
Coil Size Summary MQXFS4 MQXFS5 MQXFS6 C108: L+R = - 100 µm
Nominal Configuration MQXFS4 and MQXFS5 MQXFS6 GPI, Kapton: 125 µm Collar Radius: 114 mm Impreg. Radius: 113.376 mm Kapton Shims: GPI, Kapton: 125 µm Collar Radius: 115 mm Impreg. Radius: 113.376 mm Kapton Shims: 8 x 125 um Kapton Total nominal radial shimming: 625 µm
Total nominal radial shimming: 625 µm 30/06/2017 Shimming Options (1) Total nominal radial shimming: 625 µm G. Vallone
MQXFS6 Assembly Shimming view from Lead End 8 x dmidplane = 2 p x dROR 4 x (L+R) = 2 p x dROR L+R (µm) dROR(µm) 50 31.831 100 63.662 150 95.493 200 127.324 250 159.155 300 190.986 125 µm 2 x 50 µm Kapton g 100 µm 50 µm 25 µm C212 C209 C208 C210 8 x 125 µm Kapton 208: L+R = 50 µm 209: L+R = -150 µm 210: L+R = 0 µm 212: L+R = -50 µm Note: 1) Azimuthal shimming increases radial size 32 µm compared to the nominal. 2) Earlier experience suggests that 125 µm should be reduced from radial size => 150 µm to be reduced with respect to the nominal shimming. Total radial shimming: 3*125 µm + 2*50 µm = 475 µm => Total radial size reduction 118 µm (nominal is 625 µm - 32 µm = 593 µm)
Layout Summary MQXFS4 MQXFS5 MQXFS6 C108: L+R = - 100 µm 2 x 50 µm Kapton g 100 µm 50 µm 25 µm C212 C209 C208 C210 8 x 125 µm Kapton C108: L+R = - 100 µm C109: L+R = - 200 µm C110: L+R = - 200 µm C111: L+R = - 150 µm C203: L+R = + 50 µm C204: L+R = - 100 µm C205: L+R = - 50 µm C206: L+R = + 100 µm 208: L+R = 50 µm 209: L+R = -150 µm 210: L+R = 0 µm 212: L+R = -50 µm WRT Nominal Radial Size: Coil pack -63 µm Shimming -200 µm Tot -263 µm WRT Nominal Radial Size: Coil pack +63 µm Shimming -175 µm Tot -112 µm WRT Nominal Radial Size: Coil pack +32 µm Shimming -150 µm Tot -118 µm
MQXFS 6 Pole gap measurement Average gap average over length is about 15.00 mm => 180 um wider than the expected (14.82 mm)
Clearance per side Average clearance average over length is about 300 um => 90 um wider than the expected (210 um) Collar Key Δ 𝑡 collars 0.125 mm 0.125 mm 𝑡 clearance/side = Δ 𝑡 collars −13.9−4⋅0.125 2 mm 13.9 mm
Layout Summary MQXFS4 MQXFS5 MQXFS6 C108: L+R = - 100 µm 2 x 50 µm Kapton g 100 µm 50 µm 25 µm C212 C209 C208 C210 8 x 125 µm Kapton C108: L+R = - 100 µm C109: L+R = - 200 µm C110: L+R = - 200 µm C111: L+R = - 150 µm C203: L+R = + 50 µm C204: L+R = - 100 µm C205: L+R = - 50 µm C206: L+R = + 100 µm 208: L+R = 50 µm 209: L+R = -150 µm 210: L+R = 0 µm 212: L+R = -50 µm WRT Nominal Radial Size: Coil pack -63 µm Shimming -200 µm Tot -263 µm WRT Nominal Radial Size: Coil pack +63 µm Shimming -175 µm Tot -112 µm WRT Nominal Radial Size: Coil pack +32 µm Shimming -150 µm Tot -118 µm Clearance per side: 200 µm Clearance per side: 100 µm Clearance per side: 300 µm
Azimuthal Preload Transfer Function MQXFS4 MQXFS5 MQXFS6 Min Max Avg Shell 56 62 59 Coil -94 -69 -90 Min Max Avg Shell 90 94 92 Coil -112 -82 -99 Min Max Avg Shell 62 70 67 Coil -113 -77 -83 Clearance per side: 200 µm Clearance per side: 100 µm Clearance per side: 300 µm
Azimuthal Preload Transfer Function 2 MQXFS4 MQXFS5 MQXFS6 Min Max Avg Shell 129 136 133 Coil -150 -103 -118 Min Max Avg Shell 178 184 182 Coil -125 -110 -118 Min Max Avg Shell 107 128 113 Coil -130 -115 -121
MQXFS6 Azimuthal Stress Eelis Takala
MQXFS6 Rod Longitudinal Stress Eelis Takala
Delta Stress Comparison – Coil, Shell and Rods Thick vs thin laminates G. Vallone et. Al., “Mechanical Analysis of the Short Model Magnets for the Nb3Sn Low-β Quadrupole MQXF”, Trans. Appl. Supercond., 28(3), April 2018
MQXFS4 and MQXFS6 mechanical behavior Conclusions MQXFS4 vs MQXFS6 Mechanically similar except thin vs thick iron laminates Clearance per side 200 um, 300 um Shell/Coil stress (58 MPa/-90 MPa, 67 MPa /-96 MPa) MQXFS4 and MQXFS6 mechanical behavior Similar in contrast to MQXFS5 Delta rod stress different Thin vs thick iron laminates => different stiffness (or different friction) Eelis Takala
APPENDIX Eelis Takala
MQXFS4 Coil Size 30/06/2017 Coil size within ±50 𝜇𝑚 Impact of additional polyamide layer? Why 110 is so regular? G. Vallone
15/02/2017 MQXFS5 Coil Size Coil Mould L+R 𝝁𝒎 Thickness 203 2 40 204 1 -94 -68 205 -28 -45 206 100 32 There may be some effect of the mould on the coil shape As the smaller shim that we are using is 25 𝜇𝑚, we cannot correct less than 50 𝜇𝑚 Why: if we shim on the mid plane we need two shims. On the azimuthal direction we need to apply 4 2𝜋 𝐿+𝑅 , with similar results. Coil Mould L+R 𝝁𝒎 Thickness 203 2 50 204 1 -100 -68 205 -50 -45 206 100 32 G. Vallone
MQXFS4 Second Layout – Final? 30/06/2017 MQXFS4 Second Layout – Final? 8 𝑥 𝑑𝑚𝑖𝑑𝑝𝑙𝑎𝑛𝑒 = 2 𝑝 𝑥 𝑑𝑅𝑂𝑅 4 𝑥 (𝐿+𝑅) = 2 𝑝 𝑥 𝑑𝑅𝑂𝑅 𝐿+𝑅 (µ𝑚) 𝑑𝑅𝑂𝑅(µ𝑚) 50 31.8 100 63.6 150 95.4 200 127.3 250 159.1 300 190.9 View from the Lead End C108: L+R = - 100 µm C109: L+R = - 200 µm C110: L+R = - 200 µm C111: L+R = - 150 µm Note: The coil pack is 65 µm smaller than the nominal size. 125 µm removed in an attempt to improve the coil/collar contact. G. Vallone
MQXFS5 Coil Pack Layout 15/02/2017 View from the Lead End C203: L+R = + 50 µm C204: L+R = - 100 µm C205: L+R = - 50 µm C206: L+R = + 100 µm Because of some concerns on the preloading test results, we decided to remove 100 𝜇𝑚 of radial shimming on the final assembly. No more fuji paper. The mid-plane shim thickness is the same. G. Vallone