Introgression of Neandertal- and Denisovan-like Haplotypes Contributes to Adaptive Variation in Human Toll-like Receptors  Michael Dannemann, Aida M.

Slides:



Advertisements
Similar presentations
A Haplotype at STAT2 Introgressed from Neanderthals and Serves as a Candidate of Positive Selection in Papua New Guinea  Fernando L. Mendez, Joseph C.
Advertisements

The Structure of Common Genetic Variation in United States Populations
Genetic Adaptation of Fatty-Acid Metabolism: A Human-Specific Haplotype Increasing the Biosynthesis of Long-Chain Omega-3 and Omega-6 Fatty Acids  Adam.
Katarzyna Bryc, Eric Y. Durand, J
Michael Dannemann, Janet Kelso  The American Journal of Human Genetics 
The Heritage of Pathogen Pressures and Ancient Demography in the Human Innate- Immunity CD209/CD209L Region  Luis B. Barreiro, Etienne Patin, Olivier Neyrolles,
Itsik Pe’er, Yves R. Chretien, Paul I. W. de Bakker, Jeffrey C
Genomic Patterns of Homozygosity in Worldwide Human Populations
Three Genome-wide Association Studies and a Linkage Analysis Identify HERC2 as a Human Iris Color Gene  Manfred Kayser, Fan Liu, A. Cecile J.W. Janssens,
CYP3A Variation and the Evolution of Salt-Sensitivity Variants
Katarzyna Bryc, Eric Y. Durand, J
Volume 26, Issue 7, Pages (April 2016)
Introgression of Neandertal- and Denisovan-like Haplotypes Contributes to Adaptive Variation in Human Toll-like Receptors  Michael Dannemann, Aida M.
An Extensive Analysis of Y-Chromosomal Microsatellite Haplotypes in Globally Dispersed Human Populations  Manfred Kayser, Michael Krawczak, Laurent Excoffier,
High-Resolution Genetic Maps Identify Multiple Type 2 Diabetes Loci at Regulatory Hotspots in African Americans and Europeans  Winston Lau, Toby Andrew,
Volume 26, Issue 24, Pages (December 2016)
Alicia R. Martin, Christopher R. Gignoux, Raymond K
Haplotype Estimation Using Sequencing Reads
Caroline Durrant, Krina T. Zondervan, Lon R
Alessia Ranciaro, Michael C. Campbell, Jibril B
Proportioning Whole-Genome Single-Nucleotide–Polymorphism Diversity for the Identification of Geographic Population Structure and Genetic Ancestry  Oscar.
Jong-Min Lee, Kyung-Hee Kim, Aram Shin, Michael J
Brian K. Maples, Simon Gravel, Eimear E. Kenny, Carlos D. Bustamante 
Signatures of Purifying and Local Positive Selection in Human miRNAs
A Predominantly Indigenous Paternal Heritage for the Austronesian-Speaking Peoples of Insular Southeast Asia and Oceania  Cristian Capelli, James F. Wilson,
Gene-Expression Variation Within and Among Human Populations
Genetic Adaptation of Fatty-Acid Metabolism: A Human-Specific Haplotype Increasing the Biosynthesis of Long-Chain Omega-3 and Omega-6 Fatty Acids  Adam.
Michael Dannemann, Janet Kelso  The American Journal of Human Genetics 
Genomic Signatures of Selective Pressures and Introgression from Archaic Hominins at Human Innate Immunity Genes  Matthieu Deschamps, Guillaume Laval,
Integrative Multi-omic Analysis of Human Platelet eQTLs Reveals Alternative Start Site in Mitofusin 2  Lukas M. Simon, Edward S. Chen, Leonard C. Edelstein,
Volume 173, Issue 1, Pages e9 (March 2018)
The Predecessors Within
CYP3A Variation and the Evolution of Salt-Sensitivity Variants
The Divergence of Neandertal and Modern Human Y Chromosomes
Robust Inference of Identity by Descent from Exome-Sequencing Data
Volume 9, Issue 12, Pages (December 2016)
Sriram Sankararaman, Swapan Mallick, Nick Patterson, David Reich 
Catarina D. Campbell, Nick Sampas, Anya Tsalenko, Peter H
Volume 19, Issue 15, Pages (August 2009)
Brian P. McEvoy, Joanne M. Lind, Eric T. Wang, Robert K
E. Wang, Y. -C. Ding, P. Flodman, J. R. Kidd, K. K. Kidd, D. L
Highly Punctuated Patterns of Population Structure on the X Chromosome and Implications for African Evolutionary History  Charla A. Lambert, Caitlin F.
Complex Signatures of Natural Selection at the Duffy Blood Group Locus
Shuhua Xu, Wei Huang, Ji Qian, Li Jin 
by Benjamin Vernot, Serena Tucci, Janet Kelso, Joshua G
Selina Vattathil, Joshua M. Akey  Cell 
Brian P. McEvoy, Joanne M. Lind, Eric T. Wang, Robert K
The Divergence of Neandertal and Modern Human Y Chromosomes
Leonardo Arbiza, Srikanth Gottipati, Adam Siepel, Alon Keinan 
Volume 22, Issue 1, Pages (January 2012)
Haplotype Diversity across 100 Candidate Genes for Inflammation, Lipid Metabolism, and Blood Pressure Regulation in Two Populations  Dana C. Crawford,
Selecting a Maximally Informative Set of Single-Nucleotide Polymorphisms for Association Analyses Using Linkage Disequilibrium  Christopher S. Carlson,
Identifying Darwinian Selection Acting on Different Human APOL1 Variants among Diverse African Populations  Wen-Ya Ko, Prianka Rajan, Felicia Gomez, Laura.
Volume 9, Issue 7, Pages (July 2016)
Trevor J. Pemberton, Chaolong Wang, Jun Z. Li, Noah A. Rosenberg 
Complex History of Admixture between Modern Humans and Neandertals
Worldwide Population Analysis of the 4q and 10q Subtelomeres Identifies Only Four Discrete Interchromosomal Sequence Transfers in Human Evolution  Richard.
Sriram Sankararaman, Swapan Mallick, Nick Patterson, David Reich 
Volume 29, Issue 1, Pages e5 (January 2019)
Pleiotropic Effects of Trait-Associated Genetic Variation on DNA Methylation: Utility for Refining GWAS Loci  Eilis Hannon, Mike Weedon, Nicholas Bray,
Yu Zhang, Tianhua Niu, Jun S. Liu 
Volume 26, Issue 23, Pages (December 2016)
Abraham's Children in the Genome Era: Major Jewish Diaspora Populations Comprise Distinct Genetic Clusters with Shared Middle Eastern Ancestry  Gil Atzmon,
Matthew A. Saunders, Jeffrey M. Good, Elizabeth C. Lawrence, Robert E
Genotype-Imputation Accuracy across Worldwide Human Populations
The Genomic Footprints of the Fall and Recovery of the Crested Ibis
A Haplotype at STAT2 Introgressed from Neanderthals and Serves as a Candidate of Positive Selection in Papua New Guinea  Fernando L. Mendez, Joseph C.
The Heritage of Pathogen Pressures and Ancient Demography in the Human Innate- Immunity CD209/CD209L Region  Luis B. Barreiro, Etienne Patin, Olivier Neyrolles,
Jung-Ying Tzeng, Daowen Zhang  The American Journal of Human Genetics 
Brian C. Verrelli, Sarah A. Tishkoff 
Presentation transcript:

Introgression of Neandertal- and Denisovan-like Haplotypes Contributes to Adaptive Variation in Human Toll-like Receptors  Michael Dannemann, Aida M. Andrés, Janet Kelso  The American Journal of Human Genetics  Volume 98, Issue 1, Pages 22-33 (January 2016) DOI: 10.1016/j.ajhg.2015.11.015 Copyright © 2016 The Authors Terms and Conditions

Figure 1 The Introgressed Region Encompassing the Genes TLR10, TLR1, and TLR6 on Chromosome 4 The genetic length of the region (chr4: 38,760,338–38,905,731; hg19) based on three recombination maps ranges from 0.04 cM to 0.1 cM (HapMap, 0.1 cM; deCode, 0.04 cM; and Hinch African American map, 0.08 cM). (i) The gene structures for TLR10, TLR1, and TLR6 are displayed. (ii) Predicted Neandertal haplotypes from the Neandertal ancestry map by Vernot et al.6 for Asians (green) and Europeans (blue). (iii) Neandertal introgression posterior probabilities across polymorphic positions for Asians (blue solid lines) and Europeans (green solid lines) from the Neandertal ancestry map by Sankararaman et al.5 The chromosomal average introgression posterior probabilities are given as green and blue dashed lines. (iv) Sharing of the Neandertal allele across archaic-like SNPs within seven core haplotypes: the Neandertal and Denisovan sequences and the seven modern human core haplotypes. The frequencies of Neandertal and Yoruba alleles for the archaic-like SNPs within each core haplotype are colored in red and black, respectively. (v) Significantly associated SNPs with Helicobacter seroprevalence or allergic disease overlapping archaic-like SNPs are displayed.19,20 The American Journal of Human Genetics 2016 98, 22-33DOI: (10.1016/j.ajhg.2015.11.015) Copyright © 2016 The Authors Terms and Conditions

Figure 2 Divergence of the Identified Core Haplotypes at TLR10, TLR1, and TLR6 (A) Neighbor-joining tree on the inferred sequences of seven modern human core haplotypes (III–IX), and the Neandertal (I), Denisovan (II), orangutan, and chimpanzee genome sequences. Bootstrap values (1,000 replicates) for the topology are provided in blue squares at each node. The pie charts show the frequency in the four continental population groups of each modern human core haplotype. Next to each pie chart, the frequency of haplotypes among 1000 Genomes individuals assigned to the corresponding core haplotype is displayed. For core haplotype-defining positions in each branch, see Table S2. (B) Pair-wise average nucleotide distance between haplotypes in core haplotypes. The American Journal of Human Genetics 2016 98, 22-33DOI: (10.1016/j.ajhg.2015.11.015) Copyright © 2016 The Authors Terms and Conditions

Figure 3 Genotype-Dependent Expression of the TLR Genes The normalized expression in EBV-transformed lymphocytes (individuals in black cubes and entire distribution shown as boxplot; y axis) across GTEx individuals with different genotypes at shared archaic-like SNP positions (x axis: NT, Neandertal allele; AF, African allele) for each TLR gene. Differential expression p values between genotypes are displayed in the upper part of each plot. Median and quartiles are shown and whiskers show the range of expression values. The American Journal of Human Genetics 2016 98, 22-33DOI: (10.1016/j.ajhg.2015.11.015) Copyright © 2016 The Authors Terms and Conditions

Figure 4 Clustering of the Seven Core Haplotypes Based on Allele Sharing with GWAS SNPs Principal-component analysis based on the sequence distance between modern human core haplotypes III–IX for the GWAS SNPs reported to be significantly associated with allergic disease (A)20 and Helicobacter pylori seroprevalence (B).19 The American Journal of Human Genetics 2016 98, 22-33DOI: (10.1016/j.ajhg.2015.11.015) Copyright © 2016 The Authors Terms and Conditions

Figure 5 Geographic Distribution of the Neandertal-like TLR Haplotypes World map showing the frequencies of Neandertal-like core haplotypes in the 1000 Genomes dataset (A) and the Simons Genome Diversity Panel (B). In (B), the size of each pie is proportional to the number of individuals within a population. Core haplotypes (III, orange; IV, green; non-archaic core haplotypes V, VI, VIII, IX, blue) are colored. The American Journal of Human Genetics 2016 98, 22-33DOI: (10.1016/j.ajhg.2015.11.015) Copyright © 2016 The Authors Terms and Conditions