Notch Signaling Inhibits Axon Regeneration

Slides:



Advertisements
Similar presentations
Volume 14, Issue 1, Pages (January 2008)
Advertisements

Axons Degenerate in the Absence of Mitochondria in C. elegans
Volume 55, Issue 4, Pages (August 2007)
Volume 15, Issue 1, Pages (January 2012)
Calcium Signals Control Wnt-Dependent Dendrite Growth
Volume 74, Issue 6, Pages (June 2012)
Tissue-Specific Activities of C
Naoki Hisamoto, Chun Li, Motoki Yoshida, Kunihiro Matsumoto 
Volume 8, Issue 1, Pages (January 2011)
Kinesin-13 and Tubulin Posttranslational Modifications Regulate Microtubule Growth in Axon Regeneration  Anindya Ghosh-Roy, Alexandr Goncharov, Yishi.
Identification of E2/E3 Ubiquitinating Enzymes and Caspase Activity Regulating Drosophila Sensory Neuron Dendrite Pruning  Chay T. Kuo, Sijun Zhu, Susan.
Fibrinogen in the Nervous System: Glia Beware
Volume 25, Issue 19, Pages (October 2015)
A Surviving Intact Branch Stabilizes Remaining Axon Architecture after Injury as Revealed by In Vivo Imaging in the Mouse Spinal Cord  Ariana O. Lorenzana,
Volume 57, Issue 3, Pages (February 2008)
Volume 88, Issue 4, Pages (November 2015)
The DLK-1 Kinase Promotes mRNA Stability and Local Translation in C
Volume 85, Issue 2, Pages (January 2015)
The Cadherin Flamingo Mediates Level-Dependent Interactions that Guide Photoreceptor Target Choice in Drosophila  Pei-Ling Chen, Thomas R. Clandinin 
Independent Control of Aging and Axon Regeneration
Volume 71, Issue 6, Pages (September 2011)
Volume 43, Issue 2, Pages e7 (October 2017)
The Conserved Immunoglobulin Superfamily Member SAX-3/Robo Directs Multiple Aspects of Axon Guidance in C. elegans  Jennifer A Zallen, B.Alexander Yi,
O-GlcNAc Signaling Orchestrates the Regenerative Response to Neuronal Injury in Caenorhabditis elegans  Daniel G. Taub, Mehraj R. Awal, Christopher V.
Distinct Protein Domains and Expression Patterns Confer Divergent Axon Guidance Functions for Drosophila Robo Receptors  Bettina Spitzweck, Marko Brankatschk,
Li E. Cheng, Wei Song, Loren L. Looger, Lily Yeh Jan, Yuh Nung Jan 
The Intracellular Domain of the Frazzled/DCC Receptor Is a Transcription Factor Required for Commissural Axon Guidance  Alexandra Neuhaus-Follini, Greg J.
LIN-23-Mediated Degradation of β-Catenin Regulates the Abundance of GLR-1 Glutamate Receptors in the Ventral Nerve Cord of C. elegans  Lars Dreier, Michelle.
Volume 70, Issue 4, Pages (May 2011)
Elliot A. Perens, Shai Shaham  Developmental Cell 
Naoki Hisamoto, Chun Li, Motoki Yoshida, Kunihiro Matsumoto 
HBL-1 Patterns Synaptic Remodeling in C. elegans
Hypoxic Preconditioning Requires the Apoptosis Protein CED-4 in C
Jungmook Lyu, Vicky Yamamoto, Wange Lu  Developmental Cell 
Volume 88, Issue 4, Pages (November 2015)
Synapses and Growth Cones on Two Sides of a Highwire
Volume 26, Issue 5, Pages (March 2016)
Massimo A. Hilliard, Cornelia I. Bargmann  Developmental Cell 
Volume 55, Issue 4, Pages (August 2007)
Vangl2 Promotes Wnt/Planar Cell Polarity-like Signaling by Antagonizing Dvl1-Mediated Feedback Inhibition in Growth Cone Guidance  Beth Shafer, Keisuke.
Volume 16, Issue 9, Pages (May 2006)
Volume 71, Issue 1, Pages (July 2011)
Volume 19, Issue 24, Pages (December 2009)
Volume 39, Issue 2, Pages (October 2016)
Volume 80, Issue 6, Pages (December 2013)
Rapid Assembly of Presynaptic Materials behind the Growth Cone in Dopaminergic Neurons Is Mediated by Precise Regulation of Axonal Transport  David M.
Volume 24, Issue 7, Pages (August 2018)
Volume 14, Issue 7, Pages (February 2016)
Tyson J. Edwards, Marc Hammarlund  Cell Reports 
MAX-1, a Novel PH/MyTH4/FERM Domain Cytoplasmic Protein Implicated in Netrin- Mediated Axon Repulsion  Xun Huang, Hwai-Jong Cheng, Marc Tessier-Lavigne,
A Change in the Selective Translocation of the Kinesin-1 Motor Domain Marks the Initial Specification of the Axon  Catherine Jacobson, Bruce Schnapp,
Intrinsic Control of Axon Regeneration
The CMK-1 CaMKI and the TAX-4 Cyclic Nucleotide-Gated Channel Regulate Thermosensory Neuron Gene Expression and Function in C. elegans  John S. Satterlee,
Volume 21, Issue 4, Pages (October 2011)
Insulin, cGMP, and TGF-β Signals Regulate Food Intake and Quiescence in C. elegans: A Model for Satiety  Young-jai You, Jeongho Kim, David M. Raizen,
The PAR-6 Polarity Protein Regulates Dendritic Spine Morphogenesis through p190 RhoGAP and the Rho GTPase  Huaye Zhang, Ian G. Macara  Developmental Cell 
Xintong Dong, Oliver W. Liu, Audrey S. Howell, Kang Shen  Cell 
Volume 75, Issue 5, Pages (September 2012)
Islet Coordinately Regulates Motor Axon Guidance and Dendrite Targeting through the Frazzled/DCC Receptor  Celine Santiago, Greg J. Bashaw  Cell Reports 
Notch-Dependent Induction of Left/Right Asymmetry in C
Volume 20, Issue 7, Pages (April 2010)
Hulusi Cinar, Sunduz Keles, Yishi Jin  Current Biology 
Numb Antagonizes Notch Signaling to Specify Sibling Neuron Cell Fates
Volume 22, Issue 19, Pages (October 2012)
Christopher C. Quinn, Douglas S. Pfeil, William G. Wadsworth 
Volume 86, Issue 6, Pages (June 2015)
Toll-like Receptor Signaling Promotes Development and Function of Sensory Neurons Required for a C. elegans Pathogen-Avoidance Behavior  Julia P. Brandt,
Volume 59, Issue 6, Pages (September 2008)
Volume 50, Issue 6, Pages (June 2006)
Volume 18, Issue 6, Pages (June 2010)
Presentation transcript:

Notch Signaling Inhibits Axon Regeneration Rachid El Bejjani, Marc Hammarlund  Neuron  Volume 73, Issue 2, Pages 268-278 (January 2012) DOI: 10.1016/j.neuron.2011.11.017 Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 1 Notch Signaling Inhibits Nerve Regeneration (A) Axon regeneration in C. elegans GABA neurons. Some injured axons regenerate (left panels), whereas some do not (right panels). Arrowheads in diagrams indicate distal axon fragments; stars indicate cell bodies. (B) GABA neurons in wild-type and in Notch/lin-12 null mutants. Arrowheads indicate commissures; stars indicate cell bodies. DNC, dorsal nerve cord; VNC, ventral nerve cord. (C) Notch/lin-12 inhibits regeneration of GABA neurons. (D) Notch/lin-12 inhibits regeneration of acetylcholine neurons. (E) Notch/glp-1 does not inhibit regeneration of GABA neurons. Neuron 2012 73, 268-278DOI: (10.1016/j.neuron.2011.11.017) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 2 Notch Affects Growth Cone Formation and Behavioral Recovery (A) Representative axons that have not formed a growth cone (left) or have formed a growth cone (right) at 6 hr after injury. (B) Growth cone formation after injury in wild-type and Notch/lin-12 null mutants. (C) Notch/lin-12 inhibits complete morphological regeneration. (D) Notch/lin-12 inhibits behavioral recovery after nerve injury. Neuron 2012 73, 268-278DOI: (10.1016/j.neuron.2011.11.017) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 3 Notch Inhibits Regeneration via a Canonical Activation Pathway (A) Notch signaling in C. elegans. (B) ADAM10/sup-17 inhibits regeneration and is required for Notch/lin-12 to inhibit regeneration. (C) ADAM17/adm-4 does not inhibit regeneration in GABA neurons. (D) Notch/lin-12 and ADAM10/sup-17 function together to inhibit regeneration. (E) Presenilin/sel-12 and hop-1 inhibit regeneration. (F) Notch protein domains and design of the GFP-tagged NICD construct (NCID-GFP). (G) NICD-GFP is localized to nuclei in GABA neurons. Green, NICD-GFP; purple, soluble mCherry; white, colocalization. Arrows indicate cell bodies; arrowheads indicate commissures. (H) Expression of NICD-GFP in wild-type animals inhibits regeneration. (I) Abl/abl-1 does not affect regeneration in GABA neurons. (J) A weak allele of CSL/lag-1 does not affect regeneration in GABA neurons. Bars in (B)–(E) and (H)–(J) show percentage of axons that initiated regeneration; error bars show 95% confidence interval (CI). ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 (See also Table S1.) Neuron 2012 73, 268-278DOI: (10.1016/j.neuron.2011.11.017) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 4 Notch/lin-12 Functions Cell Intrinsically to Limit Regeneration (A) Mosaic animals allow identification of NICD-GFP-expressing individual neurons. (B) Notch/lin-12 NICD-GFP overexpression inhibits regeneration cell intrinsically. (C) Notch/lin-12 overexpression in GABA neurons inhibits GABA neuron regeneration. (D) NICD expression in Notch/lin-12 mutants in GABA neurons inhibits GABA neuron regeneration. (E) Mosaic expression of ADAM10/sup-17 in GABA neurons, but not in muscle or skin, inhibits GABA neuron regeneration. (F) ADAM10/sup-17 overexpression in GABA neurons inhibits GABA neuron regeneration. (G) ADAM10/sup-17 overexpression in GABA neurons in Notch/lin-12 null mutants does not inhibit GABA neuron regeneration. (H) Notch/glp-1 NICD-mCh overexpression inhibits regeneration in GABA neurons. (I) ADAM/adm-4 overexpression inhibits regeneration in GABA neurons. (J) Presenilin/sel-12 overexpression does not inhibit regeneration in GABA neurons. Bars in (B)–(J) show percentage of axons that initiated regeneration; error bars show 95% CI. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. (See also Table S1.) Neuron 2012 73, 268-278DOI: (10.1016/j.neuron.2011.11.017) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 5 Notch Signaling Functions at the Time of Injury to Inhibit Regeneration, and Chemical Inhibition of Notch Improves Regeneration in Wild-Type Animals (A) Temperature shift or control (no shift) was performed immediately after axotomy. (B) Temperature manipulations do not affect regeneration in wild-type animals. (C) Regeneration is increased when temperature-sensitive ADAM10/sup-17 animals are shifted to the nonpermissive temperature after axotomy. (D) DAPT in DMSO or control (DMSO) was injected immediately after axotomy or after a 2 hr delay. (E) Injecting DAPT immediately after axotomy increases regeneration. (F) Injecting DAPT immediately after axotomy into sel-12; hop-1 mutant animals does not increase regeneration. (G) Injecting DAPT 2 hr after axotomy has no effect on regeneration. Bars in (B), (C), (E), and (F) show percentage of axons that initiated regeneration; error bars show 95% CI. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. (See also Table S2.) Neuron 2012 73, 268-278DOI: (10.1016/j.neuron.2011.11.017) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 6 Notch Regulates Regeneration Independently of the dlk-1 MAP Kinase Pathway (A) Three models describing the relationship of Notch and dlk-1 signaling during axon regeneration. (B) Expression of a cebp-1 reporter in GABA neurons in the wild-type and in ADAM10/sup-17 mutants. Arrowheads indicate commissures; stars indicate cell bodies. (C) Removing Notch signaling does not increase cebp-1 fluorescence in GABA neurons. Bars show mean fluorescence; error bars show SEM. (D) Blocking Notch activation immediately after injury does not improve regeneration in aged animals. (E) dlk-1 does not promote regeneration by inhibiting Notch. Bars show percentage of axons that initiated regeneration; error bars show 95% CI. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. (See also Table S3.) Neuron 2012 73, 268-278DOI: (10.1016/j.neuron.2011.11.017) Copyright © 2012 Elsevier Inc. Terms and Conditions