Chandrasekhar Chatterjee, Shigehiro Yasui(安井 繁宏)

Slides:



Advertisements
Similar presentations
Diquarks in heavy baryons Atsushi Hosaka (RCNP, Osaka U. ) 9/10-13, 2013Charmed baryons1 Practical questions of hadron physics How ground and excited states.
Advertisements

A). Introduction b). Quenched calculations c). Calculations with 2 light dynamical quarks d). (2+1) QCD LATTICE QCD SIMULATIONS, SOME RECENT RESULTS (END.
R. Yoshiike Collaborator: K. Nishiyama, T. Tatsumi (Kyoto University)
Topological current effect on hQCD at finite density and magnetic field Pablo A. Morales Work in collaboration with Kenji Fukushima Based on Phys. Rev.
Naoki Yamamoto (Univ. of Tokyo) Tetsuo Hatsuda (Univ. of Tokyo) Motoi Tachibana (Saga Univ.) Gordon Baym (Univ. of Illinois) Phys. Rev. Lett. 97 (2006)
Hadrons and Nuclei : Introductory Remarks Lattice Summer School Martin Savage Summer 2007 University of Washington.
Two talks for the price of one: Cooling by angulon annihilation and Asymmetrical fermion superfluids P. Bedaque (Berkeley Lab) G. Rupak, M. Savage, H.
Phase Fluctuations near the Chiral Critical Point Joe Kapusta University of Minnesota Winter Workshop on Nuclear Dynamics Ocho Rios, Jamaica, January 2010.
Vivian de la Incera University of Texas at El Paso THE ROLE OF MAGNETIC FIELDS IN DENSE QUARK MATTER.
What Do Ultracold Fermi Superfluids Teach Us About Quark Gluon and Condensed Matter Wichita, Kansas March 2012.
Chiral symmetry breaking in dense QCD
Sigma model and applications 1. The linear sigma model (& NJL model) 2. Chiral perturbation 3. Applications.
In-medium hadrons and chiral symmetry G. Chanfray, IPN Lyon, IN2P3/CNRS, Université Lyon I The Physics of High Baryon Density IPHC Strasbourg, september.
1 Dynamical Holographic QCD Model Mei HUANG Institute of High Energy Physics, CAS Theoretical Physics Center for Science Facilities, CAS Seminar at USTC,
Higgs Mechanism at Finite Chemical Potential with Type-II Nambu-Goldstone Boson Based on arXiv: v2 [hep-ph] Yusuke Hama (Univ. Tokyo) Tetsuo Hatsuda.
Yusuke Hama (Univ. Tokyo) Collaborators Tetsuo Hatsuda (Univ. Tokyo)
06-20,2005UH Teacher Workshop What’s New in Nu-clear Physics Ed V Hungerford University of Houston According to Pogo: “Nuclear Physics is not so new, and.
Lianyi He and Pengfei Zhuang Physics Department, Tsinghua U.
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
Two topics on dense quark matter
Scaling study of the chiral phase transition in two-flavor QCD for the improved Wilson quarks at finite density H. Ohno for WHOT-QCD Collaboration The.
Thermal phase transitions in realistic dense quark matter
IRGAC 2006 COLOR SUPERCONDUCTIVITY and MAGNETIC FIELD: Strange Bed Fellows in the Core of Neutron Stars? Vivian de la Incera Western Illinois University.
Vivian de la Incera University of Texas at El Paso DENSE QUARK MATTER IN A MAGNETIC FIELD CSQCD II Peking University, Beijing May 20-24, 2009.
カラー超伝導における 非アーベルボーテックスのフェルミオン 構造 安井繁宏 (KEK) in collaboration with 板倉数記 (KEK) and 新田宗土 ( 慶應大学 ) 08 Jun. 東京大学松井研究室 Phys. Rev. D81, (2010)
1 Pairings in quark-baryonic matter Qun Wang University of Science and Technology of China  Introduction  CSC: from weak to strong couplings  Boson-fermion.
Color Superconductivity: Recent developments Qun Wang Department of Modern Physics China University of Science and Technology Quark Matter 2006, Shanghai.
1 Color Superconductivity: CFL and 2SC phases  Introduction  Hierarchies of effective lagrangians  Effective theory at the Fermi surface (HDET)  Symmetries.
Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry.
CPOD2011 , Wuhan, China 1 Isospin Matter Pengfei Zhuang Tsinghua University, Beijing ● Phase Diagram at finite μ I ● BCS-BEC Crossover in pion superfluid.
The axial anomaly and the phases of dense QCD
Construction of the models of the dynamical Electroweak symmetry breaking using the ideas that come from the effective field model of Helium - 3 superfluid.
Cosmological constant Einstein (1917) Universe baryons “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
Neutron Stars, Supernova & Phases of Dense Quark Matter Seeking observable signatures for dense quark matter in astrophysics Sanjay Reddy Theoretical Division,
Gregory Gabadadze (NYU, CCPP) with R. A. Rosen, JCAP, JHEP 08,09 D. Pirtskhalava, JCAP 09.
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
ArXiv: (hep-th) Toshiaki Fujimori (Tokyo Institute of Technology) Minoru Eto, Sven Bjarke Gudnason, Kenichi Konishi, Muneto Nitta, Keisuke Ohashi.
1 NJL model at finite temperature and chemical potential in dimensional regularization T. Fujihara, T. Inagaki, D. Kimura : Hiroshima Univ.. Alexander.
“QCD Kondo effect” in dense quark matter
Color Superconductivity in High Density QCD
From fractionalized topological insulators to fractionalized Majoranas
Study of the structure of the QCD vacuum
Fractional Berry phase effect and composite particle hole liquid in partial filled LL Yizhi You KITS, 2017.
“QCD Kondo effect” KH, K. Itakura, S. Ozaki, S. Yasui,
Raju Venugopalan Brookhaven National Laboratory
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev
NGB and their parameters
P. Gubler, T.T. Takahashi and M. Oka, Phys. Rev. D 94, (2016).
Tomohiro Inagaki Hiroshima University
Magnetic supersymmetry breaking
Ginzburg-Landau approach to QCD phase transitions
Color Superconductivity: CFL and 2SC phases
Color Superconductivity in dense quark matter
Color Superconductivity in High Density QCD
Topological Order and its Quantum Phase Transition
in collaboration with Y. Nakagawa and K. Matsumoto
Color Superconductivity
Color Superconductivity in High Density QCD
Quartetting and pairing instabilities in 1D spin 3/2 fermionic systems
Spontaneous P-parity breaking in QCD at large chemical potentials
Charm2010 4TH International Workshop on Charm Physics
International Workshop on Quantum Chromodynamics
Efrain J. Ferrer Paramagnetism in Compact Stars
Chengfu Mu, Peking University
SOC Fermi Gas in 1D Optical Lattice —Exotic pairing states and Topological properties 中科院物理研究所 胡海平 Collaborators : Chen Cheng, Yucheng Wang, Hong-Gang.
Hyun Kyu Lee Hanyang University
Yukawa Institute for Theoretical Physics
EoS in 2+1 flavor QCD with improved Wilson fermion
Edward Shuryak Stony Brook
Presentation transcript:

Chandrasekhar Chatterjee, Shigehiro Yasui(安井 繁宏) Non-Abelian vortices in dense QCD: quark hadron continuity and non-Abelian statistics 2019/6/24@ Tokyo campus, Univ. of Tsukuba Muneto Nitta(新田宗土) Chandrasekhar Chatterjee, Shigehiro Yasui(安井 繁宏) Keio U.(慶應義塾大学)

Topic in this talk from Fukushima & Hatsuda Rept.Prog.Phys. 74 (2011) 014001

“Color superconductor” Quantum Chromo Dynamics (QCD) quarks Quark matter i = u,d,s flavor(global) SU(3) α = r,g,b color(gauge) SU(3) Color-flavor locked (CFL) phase “Color superconductor” @ high density Bailin-Love(‘79), Iwasaki-Iwado(‘95) Alford-Rajagopal-Wilczek(‘98) 3x3 matrix Color superconductivity as well as superfluidity from Fukushima & Hatsuda Rept.Prog.Phys. 74 (2011) 014001

Neutron Stars Superfluid Neutron vortices superfluid Core Nuclear matter Rotation Magnetic field Proton super- conductor Baym&Pines (‘60s) Anderson&Itoh (‘75) vortices (Flux tubes)

Color superconductor

Landau-Ginzburg model from QCD Iida&Baym(‘01) Giannakis&Ren(‘02) Iida,Matsuura, Tachibana&Hatsuda(‘04) density of state GL parameters For a while we consider high density limit, where strange quark mass can be neglected. We also ignore E&M interaction. We can take into account these appropriately.

Color superconductor Ground state color-flavor locked (CFL) superfluidity color superconductivity

Integer quantized superfluid vortex Color superconductor Integer quantized superfluid vortex Iida & Baym, Forbes & Zhitnitsky(‘02)

Color superconductor 1/3 quantized vortex Balachandran, Digal & Matsuura (BDM) (‘05) Nakano, MN & Matsuura (‘07), Eto & MN (‘09)

1/3 quantized vortex 1/3 quantized SU(3) color Superfluid vortex Non-Abelian vortex color flux tube

1/3 quantized vortex Profiles trace traceless confined color flux Long tail of a superfluid vortex Gauge field confined color flux Eto & MN (‘09)

1/3 quantized vortex 1/3 quantized SU(3) color Superfluid vortex Non-Abelian vortex color flux tube

1/3 quantized vortex 1/3 quantized SU(3) color Superfluid vortex Non-Abelian vortex color flux tube

1/3 quantized vortex 1/3 quantized SU(3) color Superfluid vortex Comment Non-Abelian vortices were discovered earlier in the context of Supersymmetry and String theory (‘03) 1/3 quantized vortex 1/3 quantized SU(3) color Superfluid vortex Non-Abelian vortex color flux tube

Non-Abelian vortices Abelian vortex No flux Which are energetically Color Fluxes Abelian vortex No flux Which are energetically favored?

Split Non-Abelian vortices Abelian vortex No flux = = Color Fluxes Nakano, MN & Matsuura (‘07), simulation by Alford et.al (‘16)

Abrikosov vortex lattice

Colorful vortex lattice

Nambu-Goldstone modes localized around the vortex @ vortex core Nambu-Goldstone modes localized around the vortex Continuous family of solutions exists Eto,Nakano&MN(’09) = Gapless modes propagating along the vortex line “ground state” 1+1 dim effective theory fluctuations

Quark-hadron continuity

How do vortices connect? Hadron (hyperon) matter ??? Quark Matter (CFL) ??? Neutron star

Continuity of Quark and Hadron Matter Thomas Schäfer and Frank Wilczek Phys. Rev. Lett. 82, 3956 – Published 17 May 1999 (continuity or crossover) No phase transition between hadron and CFL phases Matching of symmetries and excitations (Nambu-Goldstone modes etc) Three-flavor quarks with degenerate mass

Continuity of Quark and Hadron Matter Thomas Schäfer and Frank Wilczek Phys. Rev. Lett. 82, 3956 – Published 17 May 1999 Colorful boojums at the interface of a color superconductor Mattia Cipriani, Walter Vinci, and Muneto Nitta Phys. Rev. D 86, 121704(R) – Published 21 December 2012 Continuity of vortices from the hadronic to the color-flavor locked phase in dense matter Mark G. Alford, Gordon Baym, Kenji Fukushima, Tetsuo Hatsuda, Motoi Tachibana, Phys.Rev. D99 (2019) no.3, 036004 e-Print: arXiv:1803.05115 [hep-ph] Quark-hadron continuity under rotation: vortex continuity or boojum? Chandrasekhar Chatterjee, Muneto Nitta, Shigehiro Yasui Phys.Rev. D99 (2019) no.3, 034001, e-Print: arXiv:1806.09291 [hep-ph] Anyonic particle-vortex statistics and the nature of dense quark matter Aleksey Cherman, Srimoyee Sen, Laurence G. Yaffe e-Print: arXiv:1808.04827 [hep-th] Quark-hadron continuity beyond Ginzburg-Landau paradigm Yuji Hirono, Yuya Tanizaki Phys.Rev.Lett. 122 (2019) no.21, 212001, e-Print: arXiv:1811.10608 [hep-th]

What is Boojum? “The Hunting Of Snark” Lewis Carroll Boojum A particularly dangerous kind of Snark Boojum trees in Arizona

What is Boojum? D.Mermin (1976) In physics, named by Boojums on the container wall in superfluid 3He-A Boojum in two component BECs Kasamatsu-Takeuchi- MN-Tsubota, JHEP1011:068,2010 [arXiv:1002.4265] Boojums in 3He A-B phase boundary Boojum in liquid crystal

Colorful boojum at interface of quark matter hadron matter Cipriani,Vinci & MN, Phys.Rev.D86:121704,2012 [arXiv:1208.5704] Quark matter

Λ=uds , Σ=uus, Ξ=uss ΔΛ Λ =<Λ Λ> ≠ 0 Hadron matter with degenerate quark mass ⇒ Hyperon matter Takatsuka & Tamagaki Λ=uds , Σ=uus, Ξ=uss Baryon: hyperon 8 x 8 = 1 + 8 + 8 + 10 + 10* + 27 ΔΛ Λ =<Λ Λ> ≠ 0 U(1)B spontaneous symmetry breaking ⇒ superfluidity  ⇒ vortices under rotation How these ΛΛ vortices connect to non-Abelian vortices in CFL phase?

Bogoliubov-de Gennes equation in hadron phase Λ Λ hyperon acquires a phase (1/2)×2π = π around a vortex Λ=uds Λ At quark level… Generalized Aharonov-Bohm phase Z6 u,d,s

Light (uds) quarks U(1)B SU(3)c AB phase heavy (cbt) quarks Only SU(3)c AB phase

q → diag. (e-iπ, e+iπ, e+iπ) q = -q Light (uds) quarks Complete encirclement U(1)B SU(3)c AB phase q → diag. (e-iπ, e+iπ, e+iπ) q = -q q → diag. (e+iπ, e-iπ, e+iπ) q = -q Z2 q → diag. (e+iπ, e+iπ, e-iπ) q = -q heavy (cbt) quarks Z3 Only SU(3)c AB phase

Don’t match Vortex continuity doesn’t work hadron phase CFL phase Z6

Generalized Aharonov-Bohm phase matching hadron phase CFL phase Z6 Z2

Aharanov-Bohm phase matching for heavy quarks hadron phase CFL phase 1 1 1 1 ω3=1 Z3

Triplet Majorana fermion protected by SO(3) Fermions trapped inside a vortex core velocity @ vortex core Triplet Majorana fermion protected by SO(3) Yasui, Itakura & MN, Phys.Rev.D81,105003(2010) [arXiv:1001.3730] Index theorem Fujiwara,Fukui,MN&Yasui (’11) Non-Abelian statistics Yasui,Itakuta&MN(’11), Hirono,Yasui,Itakura&MN(‘12) These fermions are important for transportation coeff. of quasi-particles.

Exchange of identical vortices with Majorana fermions Previous study Yasui,Itakura,MN Phys.Rev.B83:134518,2011 [arXiv:1010.3331] Yasui,Itakura,MN Nucl.Phys.B859:261-268,2012 [arXiv:1109.2755] Hirono,Yasui,Itakura,MN Phys.Rev.B86:014508,2012 [arXiv:1203.0173] Yasui,Hirono,Itakura,MN Phys.Rev.E87:052142,2013 [arXiv:1204.1164] Exchange of identical vortices with Majorana fermions → non-Abelian anyons Current study Exchange of different vortices with Majorana fermions → novel non-Abelian anyons?

match Don’t match hadron phase CFL phase SSB vortex core Discussion based on Ginzburg-Landau theory hadron phase match CFL phase Bulk symmetries SSB vortex core Vortex core symmetries Don’t match

match Don’t have to match hadron phase CFL phase SSB vortex core SU(3) Bulk symmetries SSB vortex core Vortex core symmetries SU(3) Don’t have to match

Collaborators Hadron, HEP, Cond-mat Eiji Nakano(Kouchi), Taeko Matsuura(Hokkaido), Minoru Eto(Yamagata), Naoki Yamamoto(Keio), Shigehiro Yasui(Titech) , Kazunori Itakura(KEK), Yuji Hirono(BNL), Takuya Kanazawa(RIKEN), Takanori Fujiwara(Ibaragi), Takahiro Fukui(Ibaragi), Walter Vinci(USC), Mattia Cipriani(Pisa), Michikazu Kobayashi(Kyoto), Chandrasekhar Chatterjee (Keio)

References [1] with Nakano,Matsuura, Phys.Rev.D78:045002,2008 [arXiv:0708.4096] [2] with Eto, Phys.Rev.D80:125007,2009 [arXiv:0907.1278] [3] with Eto,Nakano, Phys.Rev.D80:125011,2009 [arXiv:0908.4470] [4] with Eto,Yamamoto, Phys.Rev.Lett.104:161601,2010 [arXiv:0912.1352] [5] with Yasui,Itakura, Phys.Rev.D81:105003,2010 [arXiv:1001.3730] [6] with Hirono,Kanazawa, Phys.Rev.D83:085018,2011 [arXiv:1012.6042] [7] with Eto,Yamamoto, Phys.Rev.D83:085005,2011 [arXiv:1101.2574] [8] with Fujiwara,Fukui,Yasui,Phys.Rev.D84:076002,2011 [arXiv:1105.2115] [9] with Hirono, Phys.Rev.Lett.109:062501,2012 [arXiv:1203.5059] [10] with Vinci,Cipriani, Phys.Rev.D86:085018,2012 [arXiv:1206.3535] [11] with Cipriani,Vinci,      Phys.Rev.D86:121704,2012 [arXiv:1208.5704] [12] with Kobayashi, PTEP:021B01,2014 [arXiv:1307.6632] [13] with Eto,Hirono,Yasui, invited review PTEP 2014 (2014) 012D01 [arXiv:1308.1535] [14] with Kobayashi,Nakano, JHEP 1406,130:2014 [arXiv:1311.2399] [15] with Chatterjee, Phys.Rev.D93: 065050, 2016 [arXiv:1512.06603] [16] with Chatterjee,Cipriani, Phys.Rev.D93, 065046 (2016) [arXiv:1602.01677] [17] with Chatterjee, Phys.Rev.D95 (2017) 085013 [arXiv:1612.09419] [18] with Chatterjee,Yasui, Phys.Rev.D99 (2019) 034001 [arXiv:1806.09291]

References Non-Abelian Statistics of Majorana fermions [19] with Yasui,Itakura, Phys.Rev.B83:134518,2011 [arXiv:1010.3331] [20] with Yasui,Itakura, Nucl.Phys.B859:261-268,2012 [arXiv:1109.2755] [21] with Hirono,Yasui,Itakura,Phys.Rev.B86:014508,2012 [arXiv:1203.0173] [22] with Yasui,Hirono,Itakura,Phys.Rev.E87:052142,2013 [arXiv:1204.1164] Chiral symmetry breaking [23] with Shiiki Phys.Lett.B658:143-147,2008 [arXiv:0708.4091] [24] with Nakano,Matsuura, Phys.Lett.B672:61-64,2009 [arXiv:0708.4092] [25] with Eto,Nakano, Nucl.Phys.B821:129-150,2009 [arXiv:0903.1528] [26] with Eto,Hirono, PTEP 2014 (2014) 033B01 [arXiv:1309.4559]