Neural Circuitry that Evokes Escape Behavior upon Activation of Nociceptive Sensory Neurons in Drosophila Larvae  Jiro Yoshino, Rei K. Morikawa, Eri Hasegawa,

Slides:



Advertisements
Similar presentations
Behavioral Neuroscience: Crawling Is a No-Brainer for Fruit Fly Larvae
Advertisements

Volume 26, Issue 2, Pages (January 2016)
Mark E.J. Sheffield, Michael D. Adoff, Daniel A. Dombeck  Neuron 
Abdominal-B Neurons Control Drosophila Virgin Female Receptivity
Volume 26, Issue 23, Pages (December 2016)
Volume 61, Issue 4, Pages (February 2009)
Pinky Kain, Anupama Dahanukar  Neuron 
Kevin Mann, Courtney L. Gallen, Thomas R. Clandinin  Current Biology 
Nociceptive Neurons Protect Drosophila Larvae from Parasitoid Wasps
Volume 24, Issue 9, Pages e4 (August 2018)
Dopaminergic Modulation of Sucrose Acceptance Behavior in Drosophila
Daniel T. Babcock, Christian Landry, Michael J. Galko  Current Biology 
Jung Hwan Kim, Xin Wang, Rosemary Coolon, Bing Ye  Neuron 
Starvation-Induced Depotentiation of Bitter Taste in Drosophila
Bennett Drew Ferris, Jonathan Green, Gaby Maimon  Current Biology 
Representations of Taste Modality in the Drosophila Brain
Volume 25, Issue 10, Pages (May 2015)
Volume 27, Issue 5, Pages (March 2017)
Volume 23, Issue 13, Pages (July 2013)
Krüppel Mediates the Selective Rebalancing of Ion Channel Expression
Li E. Cheng, Wei Song, Loren L. Looger, Lily Yeh Jan, Yuh Nung Jan 
Overexpressing Centriole-Replication Proteins In Vivo Induces Centriole Overduplication and De Novo Formation  Nina Peel, Naomi R. Stevens, Renata Basto,
Masayuki Koganezawa, Ken-ichi Kimura, Daisuke Yamamoto  Current Biology 
Volume 18, Issue 15, Pages (August 2008)
Neuronal Control of Drosophila Courtship Song
Volume 18, Issue 4, Pages (April 2010)
Volume 23, Issue 13, Pages (July 2013)
Volume 22, Issue 13, Pages (July 2012)
Ascending SAG Neurons Control Sexual Receptivity of Drosophila Females
Dendritic Filopodia, Ripped Pocket, NOMPC, and NMDARs Contribute to the Sense of Touch in Drosophila Larvae  Asako Tsubouchi, Jason C. Caldwell, W. Daniel.
Volume 20, Issue 16, Pages (August 2010)
A PDF/NPF Neuropeptide Signaling Circuitry of Male Drosophila melanogaster Controls Rival-Induced Prolonged Mating  Woo Jae Kim, Lily Yeh Jan, Yuh Nung.
A Group of Segmental Premotor Interneurons Regulates the Speed of Axial Locomotion in Drosophila Larvae  Hiroshi Kohsaka, Etsuko Takasu, Takako Morimoto,
The Molecular Basis of Sugar Sensing in Drosophila Larvae
Volume 24, Issue 6, Pages (August 2018)
Michael Jay, Jonathan Robert McDearmid  Current Biology 
BTB/POZ-Zinc Finger Protein Abrupt Suppresses Dendritic Branching in a Neuronal Subtype-Specific and Dosage-Dependent Manner  Wenjun Li, Fay Wang, Laurent.
Volume 25, Issue 17, Pages (August 2015)
A PDF/NPF Neuropeptide Signaling Circuitry of Male Drosophila melanogaster Controls Rival-Induced Prolonged Mating  Woo Jae Kim, Lily Yeh Jan, Yuh Nung.
Dendrites of Distinct Classes of Drosophila Sensory Neurons Show Different Capacities for Homotypic Repulsion  Wesley B. Grueber, Bing Ye, Adrian W. Moore,
Volume 91, Issue 6, Pages (September 2016)
Volume 27, Issue 10, Pages e4 (May 2017)
Volume 25, Issue 20, Pages (October 2015)
Volume 95, Issue 3, Pages e4 (August 2017)
Volume 27, Issue 22, Pages e4 (November 2017)
Volume 14, Issue 4, Pages (February 2004)
Jillian L. Brechbiel, Elizabeth R. Gavis  Current Biology 
Benjamin J. Matthews, Wesley B. Grueber  Current Biology 
Ashkan Javaherian, Hollis T. Cline  Neuron 
Volume 25, Issue 17, Pages (August 2015)
VRILLE Controls PDF Neuropeptide Accumulation and Arborization Rhythms in Small Ventrolateral Neurons to Drive Rhythmic Behavior in Drosophila  Kushan.
Bonnie Chu, Vincent Chui, Kevin Mann, Michael D. Gordon 
Aljoscha Nern, Yan Zhu, S. Lawrence Zipursky  Neuron 
Kevin Mann, Michael D. Gordon, Kristin Scott  Neuron 
Single Serotonergic Neurons that Modulate Aggression in Drosophila
Volume 27, Issue 18, Pages e4 (September 2017)
Volume 17, Issue 1, Pages (September 2016)
Bettina Schnell, Ivo G. Ros, Michael H. Dickinson  Current Biology 
Volume 25, Issue 5, Pages (March 2015)
Volume 20, Issue 7, Pages (April 2010)
Volume 15, Issue 23, Pages (December 2005)
Volume 17, Issue 18, Pages (September 2007)
Marie P. Suver, Akira Mamiya, Michael H. Dickinson  Current Biology 
Piezo-like Gene Regulates Locomotion in Drosophila Larvae
Volume 28, Issue 6, Pages e3 (March 2018)
Lixian Zhong, Richard Y. Hwang, W. Daniel Tracey  Current Biology 
Volume 25, Issue 5, Pages e4 (October 2018)
Volume 83, Issue 1, Pages (July 2014)
Masayuki Koganezawa, Ken-ichi Kimura, Daisuke Yamamoto  Current Biology 
Different Levels of the Homeodomain Protein Cut Regulate Distinct Dendrite Branching Patterns of Drosophila Multidendritic Neurons  Wesley B Grueber,
Presentation transcript:

Neural Circuitry that Evokes Escape Behavior upon Activation of Nociceptive Sensory Neurons in Drosophila Larvae  Jiro Yoshino, Rei K. Morikawa, Eri Hasegawa, Kazuo Emoto  Current Biology  Volume 27, Issue 16, Pages 2499-2504.e3 (August 2017) DOI: 10.1016/j.cub.2017.06.068 Copyright © 2017 Elsevier Ltd Terms and Conditions

Figure 1 C4 da Axons and mCSI Dendrites Are Closely Apposed in the VNC (A) Left: schematic lateral view of dendrite arborization and axonal projections of C4 da neurons in the third instar larvae. Right: schematic ventral view shows the axonal terminal projections of C4 da neurons in the VNC. (B) Expression patterns of R94B10-GAL4 in the larval CNS. The right two panels show simultaneous labeling of the VNC with R94B10-GAL4, UAS-mCD8GFP (green), and the C4 da marker ppk-CD4-tdTomato (magenta) in the third instar larvae. Genotypes: w, UAS-mCD8GFP/+, and R94B10-GAL4/ppk-CD4-tdTomato. Scale bars, 50 μm. (C) Simultaneous labeling of the larval VNC with R94B10-GAL4, UAS-mCD8GFP (green), and the C4 da marker ppk-CD4-tdTomato (magenta). Top panels show magnified images of the abdominal A5–6 segments (the area indicated by the dotted lines in the schema) in the VNC. Note that R94B10-GAL4 drives mCD8GFP in a pair of neurons nearby the region occupied by C4 da axon terminals such that their neurites overlapped with C4 da axon terminals. Bottom panels show a transverse section of A5 segment. Note that ventral parts of R94B10-driving neurites (green) are overlapped with C4 da axon terminals (magenta). Right panels show merged images. Genotypes: w, UAS-mCD8GFP/+, and R94B10-GAL4/ppk-CD4-tdTomato. Scale bars, 10 μm. (D) Syb-GRASP between C4 da neurons and mCSIs shows specific GFP reconstruction along C4 da axonal tracks in the VNC. Genotypes: w; UAS-nsyb-spGFP1-10, LexAop-CD4-spGFP11/ppk-GAL4; R94B10-LexA/+ (left); w; UAS-nsyb-spGFP1-10, LexAop-CD4-spGFP11/ppk-GAL4; +/+ (middle); and w; UAS-nsyb-spGFP1-10, LexAop-CD4-spGFP11/+; R94B10-LexA/+ (right). Scale bar, 20 μm. See also Figures S1 and S2. Current Biology 2017 27, 2499-2504.e3DOI: (10.1016/j.cub.2017.06.068) Copyright © 2017 Elsevier Ltd Terms and Conditions

Figure 2 Optogenetic Stimulation of C4 da Neurons Elicits Calcium Response in mCSIs (A) Schematic images of preparations for calcium imaging of mCSIs upon C4 da activation in a larval fillet. (B) Ca2+ imaging of mCSIs upon C4 da activation in ATR+ (left panels) and ATR− (right panels) conditions. Representative images of relative Ca2+ levels 2 s before (pre) and 2 s after (post) light application are shown. Scale bars, 10 μm. (C) Time series for calcium responses in mCSIs upon optogenetic activation of C4 da neurons. Blue light application was started at the time indicated by the arrow and continued for 2 s. ATR (−), n = 12; ATR (+), n = 37; envelopes indicate ± SEM. (D) Average of mCSI ΔFmax/F0 values. Data are shown as the mean ± SEM. Statistical significance was assessed by using Welch’s t test (∗p < 0.05). Current Biology 2017 27, 2499-2504.e3DOI: (10.1016/j.cub.2017.06.068) Copyright © 2017 Elsevier Ltd Terms and Conditions

Figure 3 mCSIs Are Necessary and Sufficient for Rolling Behavior (A) Optical activation of mCSIs triggers rolling behavior in the third instar larvae. Statistical significance was evaluated by Fisher’s exact test with Benjamini-Hochberg correction (∗p < 0.05). (B) mCSI activation-induced rolling behavior was completely abolished by tsh-GAL80. Statistical significance was evaluated by Fisher’s exact test (∗p < 0.05). (C) mCSI activation-induced rolling behavior was completely abolished by R94B10-GAL80. Statistical significance was evaluated by Fisher’s exact test (∗p < 0.05). (D) Silencing mCSIs causes a significant reduction of rolling probability upon C4 da activation. Statistical significance was evaluated by Fisher’s exact test with Benjamini-Hochberg correction (∗p < 0.05). See also Figure S3. Current Biology 2017 27, 2499-2504.e3DOI: (10.1016/j.cub.2017.06.068) Copyright © 2017 Elsevier Ltd Terms and Conditions

Figure 4 mCSIs Output to SNa Motor Neurons (A) Dual labeling of mCSIs (R94B10-LexA, LexAop-mCD8GFP; green) and SNa motor neurons (BarH1-GAL4, UAS-mCD8RFP; magenta). A transverse section of the A5 segment is shown. Note that mCSI axonal terminals and SNa dendritic branches are closely apposed. Genotypes: BarH1-GAL4/LexAop-mCD8GFP, UAS-mCD8RFP; +/+; R94B10-LexA/+. Scale bar, 10 μm. (B) Time series for calcium responses in SNa motor neurons upon optogenetic activation of mCSIs. Blue light application was started at the time indicated by the arrow and continued for 2 s. ATR (−), n = 6; ATR (+), n = 8; envelopes indicate ± SEM. (C) Average of mCSI ΔFmax/F0 values. Data are shown as the mean ± SEM. Statistical significance was assessed by using Welch’s t test (∗p < 0.05). (D and E) Probability of rolling behavior upon C4 da (D) or mCSI (E) activation in control (gray) and SNa-silencing larvae (red and blue). Statistical significance was evaluated by Fisher’s exact test with Benjamini-Hochberg correction (∗p < 0.05). (F and G) Basal crawling speed (F) and turn numbers (G) in control (gray) and SNa-silencing larval locomotion (red and blue). Data are shown as the mean ± SEM. Statistical significance was evaluated by Welch’s t test with Benjamini-Hochberg correction (∗p < 0.05). See also Figure S4. Current Biology 2017 27, 2499-2504.e3DOI: (10.1016/j.cub.2017.06.068) Copyright © 2017 Elsevier Ltd Terms and Conditions