Neutron studies of iron-based superconductors

Slides:



Advertisements
Similar presentations
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Advertisements

Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Unveiling the quantum critical point of an Ising chain Shiyan Li Fudan University Workshop on “Heavy Fermions and Quantum Phase Transitions” November 2012,
1 SpectroscopIC aNALYSIS Part 7 – X-ray Analysis Methods Chulalongkorn University, Bangkok, Thailand January 2012 Dr Ron Beckett Water Studies Centre &
Ivane Javakhishvili Tbilisi State University Institute of Condensed Matter Physics Giorgi Khazaradze M Synthesis and Magnetic Properties of Multiferroic.
Spin dynamics of stripe-ordered layered nickelates Andrew Boothroyd Department of Physics, Oxford University Ni 2+ (S=1) Ni 3+ (S=1/2) Cu 2+ (S=1/2) Cu.
Anandh Subramaniam & Kantesh Balani
Study of Collective Modes in Stripes by Means of RPA E. Kaneshita, M. Ichioka, K. Machida 1. Introduction 3. Collective excitations in stripes Stripes.
Kitaoka lab Itohara Keita
Crystal Structural Behavior of CoCu₂O₃ at High Temperatures April Jeffries*, Ravhi Kumar, and Andrew Cornelius *Department of Physics, State University.
P461 - Semiconductors1 Superconductivity Resistance goes to 0 below a critical temperature T c element T c resistivity (T=300) Ag mOhms/m Cu
The Double Pervoskite NaTbMnWO 6 : A Likely Multiferroic Material † Alison Pawlicki, ‡ A. S. Sefat, ‡ David Mandrus † Florida State University, ‡ Oak Ridge.
Highlights on Some Experimental Progress of FeSe Xingjiang ZHOU 2014/10/08.
Short range magnetic correlations in spinel Li(Mn Co ) 2 O 4.
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
Semiconductors n D*n If T>0
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
Abnormal thermal expansion in NaZn 13 -type La(Fe 1-x Co x ) 11.4 Al 1.6 compounds Results Yuqiang Zhao 1,2, Rongjin Huang 1,*, Shaopeng Li 1,2, Wei Wang.
Chapter 7 X-Ray diffraction. Contents Basic concepts and definitions Basic concepts and definitions Waves and X-rays Waves and X-rays Crystal structure.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Fundamentals and Future Applications of Na x CoO 2 W. J. Chang, 1 J.-Y. Lin, 2 C.-H. Hsu, 3 J.-M. Chen, 3 J.-M. Lee, 3 Y. K. Kuo, 4 H. L. Liu, 5 and J.
A image of the flux line lattice in the magnetic superconductor TmNi2B2C The hexagonal arrangement of magnetic flux lines in pure Nb imaged using neutrons.
Laboratory for Optical Physics and Engineering MOLECULAR SPECTROSCOPY OF RARE EARTH AND METAL-HALIDE MOLECULES International Symposium on Molecular Spectroscopy.
Proposal for a High Intensity Chopper Spectrometer at LANSCE Science requiring high sensitivity neutron spectroscopy Limitations of current instrumentation.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Recent advances in intercalation compounds physics.
Jim Rhyne Deputy Director Lujan Neutron Scattering Center
Magnetic Neutron Scattering Neutron spin meets electron spin Magnetic neutron diffraction Inelastic magnetic neutron scattering Polarized neutron scattering.
An Introduction to Fe-based superconductors
National Science Foundation A Study of Half-Metallic Heusler Alloys Chad Berry, Berea College, DMR Explanation: Half metals are metals that conduct.
Giorgi Ghambashidze Institute of Condensed Matter Physics, Tbilisi State University, GE-0128 Tbilisi, Georgia Muon Spin Rotation Studies of the Pressure.
Neutron Scattering Studies of Tough Quantum Magnetism Problems
Phase diagram of solid oxygen at low temperature and high pressure
Sept. 14 th 2004 Montauk, Long Island, NY Jason S. Gardner NIST, Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg,
Chapter 3 Lattice vibration and crystal thermal properties Shuxi Dai Department of Physics Unit 4 : Experimental measurements of Phonons.
3/6/ APS March Meeting1 Structure and interface properties of the electrolyte material Li 4 P 2 S 6 * Zachary D. Hood, a Cameron M. Kates, b,c.
The Magnetic phase transition in the frustrated antiferromagnet ZnCr 2 O 4 using SPINS Group B Ilir Zoto Tao Hong Yanmei Lan Nikolaos Daniilidis Sonoko.
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
Inelastic Scattering: Neutrons vs X-rays Stephen Shapiro Condensed Matter Physics/Materials Science February 7,2008.
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
Vortex Lattice Anisotropy in Magnesium Diboride Morten Ring Eskildsen Department of Physics University of Notre Dame.
Y.C. Hu 1, X.S. Wu 1, J.J. Ge 1, G.F. Cheng 2 1. Nanjing National Laboratory of Microstructures, Department of Physics, Nanjing University, Nanjing ,
High pressure study on superconductor K x Fe 2-y Se 2 M1 Hidenori Fujita Shimizu group.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Distortion and orientation of fulleride ions in A 4 C 60 G. Klupp, K. Kamarás, N. M. Nemes* +, C. Brown* +, J. Leao* Research Institute for Solid State.
Presented by Jianghua Kyungpook National University 5 th Seminar on Dark Matter Search and Double beta decay, Sept 22-23, 2011, Yangyang, Korea.
IV. Conclusions Fe-doping could keep the lattice of Bi2Se3 unchanged, and the locations of Fe atoms in the Bi2Se3 crystals would change through different.
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
SNS Experimental FacilitiesOak Ridge X /arb Spin dynamics in cuprate superconductors T. E. Mason Spallation Neutron Source Project Harrison Hot Springs.
Single crystal growth of Heisenberg spin ladder and spin chain Single crystal growth of Heisenberg spin ladder and spin chain Bingying Pan, Weinan Dong,
Phase Diagram of Ruthenate: Ca2-xSrxRuO4 (CSRO) (0. 0<x<2
ARPES studies of cuprates
Phase diagram of FeSe by nematic ultrafast dynamics
Toward a Holographic Model of d-wave Superconductors
M. Kanuchova1, M. Majoros2,J. Kanuch1,Y,Ding3, M. D. Sumption2, and E
Search of a Quantum Critical Point in High Tc Superconductors
Experimental Evidences on Spin-Charge Separation
Magnetic, structural and electronic properties of LaFeAsO1-xFx
YTTRIUM SUBSTITUTED IRON-BASED SUPERCONDUCTORS
Anisotropic superconducting properties
Superconductivity Res. T
Growth of YBCO and its Superconductivity Research
151Eu AND 57Fe MÖSSBAUER STUDY OF Eu1-xCaxFe2As2
DEMONSTRATION EXPERIMENTS
High Temperature Superconductivity
Ab initio calculation of magnetic exchange parameters
Superconducting topological surface states in the noncentrosymmetric bulk superconductor PbTaSe2 by Syu-You Guan, Peng-Jen Chen, Ming-Wen Chu, Raman Sankar,
Presentation transcript:

Neutron studies of iron-based superconductors The 9th Vacuum and Surface Science Conference of Asia and Australia Neutron studies of iron-based superconductors Jie-Yu (Shirley) Yang Advisor: Prof. Maw. Kuen. Wu, and Prof. Chih-Hao Lee Taiwan-National Tsing Hua University/Academia Sinica Aug. 13, 2018

Outline Motivation Structural and magnetic model Experimental Sample synthesis Magnetic susceptibility Neutron measurements Analysis and results Summary

Fe3O4 125 K Motivation FIG. 1.(a) XRD (b) magnetic susceptibility for K2-xFe4+ySe5 polycrystalline. FIG. 2. Magnetic susceptibility measurement for K1.9Fe4A0.5Se5, A=Cu/Mn. To study the correlation between magnetic structure and superconductivity. To identify whether the magnetic transitions observed at 125 K in the stoichiometric K2-xFe4+ySe5, related to Verwey transition (as that observed in Fe3O4). EPL, 111 (2015) 27004 J. Phys.: Condens. Matter 20 (2008) 142201

Structure model-experiment: Tetragonal I 4/m K0.8Fe1.6Se2 Fig. 1. Magnetic susceptibility and resistivity for bulk K0.8Fe1.6Se2. Fig. 3. Crystal and magnetic structure of K0.8Fe1.6Se2 in the low-temperature I 4/m unit cell. Fig. 2. Neutron powder diffraction patterns of the K0.83(2)Fe1.64(1)Se2 superconductor. CHIN. PHYS. LETT. Vol. 28, No. 8 (2011) 086104

Spin wave model-theory 70 meV 55 meV K0.8Fe1.6Se2 30 meV FIG. 2.(a) The magnetic Brillouin zone. (b) The spin-wave spectrum. The correlation between anti-ferromagnetism (AFM) and superconductivity remains unknown. 𝐻= 1 2 𝑖,𝑗 𝐽 𝑖𝑗 𝑆 𝑖 ∙ 𝑆 𝑗 −∆ 𝑖 𝑆 𝑖𝑧 2 FIG. 1.(a) The schematic representation of the vacancy ordered √5 ×√5 lattice structure in each iron plane. (b) The ordered spin configuration. FIG. 3. Temperature dependence of (a) the per-iron magnetic moment and (b) the longitudinal uniform susceptibility. PHYSICAL REVIEW B 84, 020406(R) (2011)

Sample synthesis quartz K+Fe+Se Furnace Ball milling box Ball milling machine Samples K2-xFe4+ySe5 #1 K2Fe4Se5_annealing K2Fe4Se5 #2 K1.9Fe4.2Se5 (SC) K1.9Fe4.2Se5_annealing #3 K1.9Fe4Cu0.2Se5 K1.9Fe4Cu0.2Se5_annealing #4 K1.9Fe4Mn0.2Se5 K1.9Fe4Mn0.2Se5_annealing Fe vacancy order

TAIPAN experiment: Thermal 3-Axis Spectrometer ECHIDNA experiment: High-resolution powder diffractometer TAIPAN experiment: Thermal 3-Axis Spectrometer Energy transfer E=ℏω=Ei-Ef Ef: fixed at 14.87 meV Ge(331) λ=2.4395 Å 𝑄 = 𝑘 𝑖 2 + 𝑘 𝑓 2 −2 𝑘 𝑖 𝑘 𝑓 𝑐𝑜𝑠2𝜃

Magnetic susceptibility A= Fe: Superconducting Tc=30 K A= Cu: totally suppress superconductivity A= Mn: Tc shift to lower temperature~28 K. A= Fe: Superconducting with 125 K transition A= Cu: 125 K transition A= Mn: Tc shift to lower temperature~20 K.

Neutron measurements: ECHIDNA experiment: High-resolution diffractometer Lattice constant At 300 K Samples Magnetic moment (μB) a=b (Å) c (Å) #1 K2Fe4Se5 2.817(23) 8.72126(54) 14.10288(15) #2 K1.9Fe4.2Se5 2.683(54) 8.71535(23) 14.11369(65) #2-annealing 3.007(45) 8.71739(16) 14.10608(46) #3 K1.9Fe4Cu0.2Se5 2.478(33) 8.71701(81) 14.13734(23) #3-annealing 2.871(33) 8.72172(83) 14.12850(23) #4 K1.9Fe4Mn0.2Se5 2.663(41) 8.73086(15) 14.10628(41) #4-annealing 3.208(39) 8.72525(22) 14.10379(44) Extra irons doped sample with smaller a-axis and larger c-axis. The magnitude of magnetic moment increases after annealing.

ECHIDNA experiment Transitions of magnetic order and structure Magnetic peak K2Fe4Se5_annealing K2Fe4Se5 TN~530 K TS~560 K Fe-vacancy order Temperature(K) TN < TS TN: magnetic order-disorder transition temperature TS: structure transition temperature

Summary of neutron powder diffraction The magnetic order-disorder transition temperature is at 530 K, and the structure transition temperature is at 560 K. K1.9Fe4A0.2Se5, A=Fe, Cu, annealing samples display Verwey-like transition in χ-T. No structural or magnetic transition is detected in the NPD patterns collected below and above 125 K. Superconducting sample has larger c-axis and smaller a-axis, compared to the parent compound. Quenched sample has smaller a-axis, which increases after annealing.

TAIPAN experiment: thermal 3-aixs spectrometer TN<650 K

Summary of inelastic neutron scattering The magnetic order becomes disorder above 650 K, and the coherent vibrations merge into the background. The magnon excitation seems different for the annealing and quenched  K2Fe4Se5. Thank you for your attention! Acknowledgement ANSTO Institute of Physics, Academia Sinica, Taiwan Helpful discussion: Anton Stampfl, Chin-Wei Wang