E. Erdal(1), L. Arazi(2), A. Breskin(1), S. Shchemelinin(1), A

Slides:



Advertisements
Similar presentations
T. Lux. 13/12/ Charged particles X-ray (UV) Photons Cathode Anode Amplification Provides: xy position Energy (z position) e- CsI coating.
Advertisements

1 Aaron Manalaysay Physik-Institut der Universität Zürich CHIPP 2008 Workshop on Detector R&D June 12, 2008 R&D of Liquid Xenon TPCs for Dark Matter Searches.
First observation of electroluminescence in liquid xenon within THGEM holes: towards novel Liquid Hole-Multipliers L. Arazi, A. Breskin, A. Coimbra*,
Hiroyuki Sekiya Jul. 31 st 2008, Philadelphia, ICHEP2008 Development of Gaseous Photomultiplier with GEM/μPIC Hiroyuki Sekiya ICRR, University of Tokyo.
Gas Detector Developments Jin Li. Liquid Xenon case Liquid Xenon can be considered as a gaseous xenon of 520 atm. K.Masuda, S. Takasu, T.Doke et al. (Doke.
R&D for Future ZEPLIN M.J. Carson, H. Chagani, E. Daw, V.A. Kudryavtsev, P. Lightfoot, P. Majewski, M. Robinson, N.J.C. Spooner University of Sheffield.
Dark Matter Searches with Dual-Phase Noble Liquid Detectors Imperial HEP 1st Year Talks ‒ Evidence and Motivation ‒ Dual-phase Noble Liquid Detectors ‒
New Readout Methods for LAr detectors P. Otyugova ETH Zurich, Telichenphysik CHIPP Workshop on Neutrino physics.
The XENON Project A 1 tonne Liquid Xenon experiment for a sensitive Dark Matter Search Elena Aprile Columbia University.
Detectors. Measuring Ions  A beam of charged particles will ionize gas. Particle energy E Chamber area A  An applied field will cause ions and electrons.
Proportional Light in a Dual Phase Xenon Chamber
Development and first tests of a microdot detector with resistive spiral anodes R. Oliveira, S. Franchino, V. Cairo, V. Peskov, F. Pietropaolo, P. Picchi.
Basics of an Electroluminescence Time Projection Chamber (EL TPC) EDIT 2012 Fundamentals Group: James White, Clement Sofka, Andrew Sonnenschien, Lauren.
D_R&D_6 Liquid xenon detector technology Workshop FJPPL’07, 9-12 May 2007, KEK, Japan 3  Medical Imaging with liquid xenon and 44 Sc Eric Morteau, Patrick.
Detectors for Tomorrow and After Tomorrow… Amos Breskin Radiation Detection Physics Group Weizmann Institute 1 Amos Breskin.
D EVELOPMENT OF VERY LOW THRESHOLD DETECTION SYSTEM FOR LOW - BACKGROUND EXPERIMENTS Akimov D.Yu. 1, Akindinov A.V. 1,Alexandrov I.S. 1, Belov V.A. 1,
C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 1 Thick GEM-like multipliers:
A. Breskin RD51 Amsterdam 4/08 ION BLOCKING & visible-sensitive gas-PMs Efficient ion blocking in gaseous detectors and its application to visible-sensitive.
A. Lyashenko INSTR08 – BINP – Feb ION BLOCKING & visible-sensitive gas-PMs Efficient ion blocking in gaseous detectors and its application to visible-sensitive.
Gaseous photomultipliers and liquid hole-multipliers for future noble-liquid detectors L. Arazi [1], A. E. C. Coimbra [1,2], E. Erdal [1], I. Israelashvili.
1 The GEM Readout Alternative for XENON Uwe Oberlack Rice University PMT Readout conversion to UV light and proportional multiplication conversion to charge.
QUPID Readout and Application in Future Noble Liquid Detectors Kevin Lung, UCLA TIPP 2011 June 11, 2011.
GEM: A new concept for electron amplification in gas detectors Contents 1.Introduction 2.Two-step amplification: MWPC combined with GEM 3.Measurement of.
Sheffield : R. Hollingworth, D. Tovey R.A.L. : R.Luscher Development of Micromegas charge readout for two phase Xenon based Dark Matter detectors Contents:
F.Murtas1IMAGEM DDG GEM technology for X-ray and Gamma imaging IMAGEM l Detector setup l First results on X-ray imaging l First results on Gamma ray imaging.
RED-100 detector for the first observation of the elastic coherent neutrino scattering off xenon nuclei On behalf of the COHERENT collaboration Alexander.
6-Aug-02Itzhak Tserruya PHENIX Upgrade mini-Workshop1 Boris Khachaturov, Alexander Kozlov, Ilia Ravinovich and Itzhak Tserruya Weizmann Institute, Israel.
Electron tracking Compton camera NASA/WMAP Science Team  -PIC We report on an improvement on data acquisition for a Time Projection Chamber (TPC) based.
PSD-V, London, September 1999 Two dimensional readout in a liquid xenon ionisation chamber V.Solovov, V.Chepel, A.Pereira, M.I.Lopes, R.Ferreira Marques,
1 Two-phase Ar avalanche detectors based on GEMs A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, Y. Tikhonov Budker Institute of Nuclear Physics,
Collection of Photoelectrons from a CsI Photocathode in Triple GEM Detectors C. Woody B.Azmuon 1, A Caccavano 1, Z.Citron 2, M.Durham 2, T.Hemmick 2, J.Kamin.
T. Zerguerras- RD51 WG Meeting- CERN - February Single-electron response and energy resolution of a Micromegas detector T. Zerguerras *, B.
1 A two-phase Ar avalanche detector with CsI photocathode: first results A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, R. Snopkov, Y. Tikhonov.
Update on THGEM project for RICH application Elena Rocco University of Eastern Piedmont & INFN Torino On behalf of an Alessandria-CERN-Freiburg-Liberec-
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
THGEMs: very recent results towards applications in DHCAL & LXe detector readout Weizmann: A. Breskin, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra &
P HOTON Y IELD DUE TO S CINTILLATION IN CF4 Bob Azmoun, Craig Woody ( BNL ) Nikolai Smirnov ( Yale University )
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
GEM-MSTPC for direct measurements of astrophysical reaction rates H. Ishiyama 1, K. Yamaguchi 2, Y. Mizoi 3, Y.X. Watanabe 1, T. Hashimoto 4, M.H. Tanaka.
Scintillating Bubble Chambers for Direct Dark Matter Detection Jeremy Mock On behalf of the UAlbany and Northwestern Groups 1.
Thorsten Lux. Charged particles X-ray (UV) Photons Cathode Anode Amplification Provides: xy position Energy (z position) e- CsI coating 2 Gas (Mixture)
Andrey Sokolov Novosibirsk State University (NSU) Budker Institute of Nuclear Physics (Budker INP) Novosibirsk, Russia Two-phase Cryogenic Avalanche Detector.
Study of the cryogenic THGEM-GPM for the readout of scintillation light from liquid argon Xie Wenqing( 谢文庆 ), Fu Yidong( 付逸冬 ), Li Yulan( 李玉兰 ) Department.
Presented by Samuel DUVAL On behalf of the Xénon group Industry-Academia Matching Event on Micro-Pattern Gaseous Detectors April 2012, Annecy-le-Vieux.
NEXT: A Neutrinoless 2  Experiment with a Gaseous XeTPC Thorsten Lux IFAE Barcelona in behalf of the NEXT Collaboration.
NSCL Proton Detector David Perez Loureiro September 14 th 2015.
1 Aaron Manalaysay Physik-Institut der Universität Zürich 2009 UniZH/ETH Doktorandenseminar June 5, 2009 Rubidium 83: A low-energy, spatially uniform calibrator.
R&D activities on a double phase pure Argon THGEM-TPC A. Badertscher, A. Curioni, L. Knecht, D. Lussi, A. Marchionni, G. Natterer, P. Otiougova, F. Resnati,
High Pressure Electroluminescent TPC CIEMAT/IFAE
Thick-GEM sampling element for DHCAL: First beam tests & more
Amos Breskin Weizmann Institute of Science
First operation of a double phase pure liquid Argon THGEM-TPC
Part-V Micropattern gaseous detectors
Single GEM Measurement
MPGD 2015 Concise Summary Amos Breskin.
UK Dark Matter Collaboration
A. Badertscher, L. Knecht, D. Lussi, A. Marchionni, G. Natterer, P
IBF in THGEM-based PHOTON DETECTORS, an update
Updates on the Micromegas + GEM prototype
MPGD 2013 Conference,Zaragoza July 1-4, 2012
WG1 Task2 New structures, new designs, new geometries
THGEM: Introduction to discussion on UV-detector parameters for RICH
Large Area Cryogenic Gaseous Photo Multipliers
Micro-Pattern Gaseous Detectors
3g Medical Imaging R&D with liquid xenon Compton telescope
New Study for SiPMs Performance in High Electric Field Environment
Background Reduction for Quantitative Gamma-ray Imaging with the Electron-Tracking Compton Camera in High Dose Areas May 26th, PS10A-10 T. Mizumoto,
BINP:Two-phase Cryogenic Avalanche Detector (CRAD) with EL gap and THGEM/GAPD-matrix multiplier: concept and experimental setup Concept: Detector of nuclear.
Presentation transcript:

Bubble-assisted Liquid Hole Multipliers in LXe and LAr: towards “local dual-phase TPCs” E. Erdal(1), L. Arazi(2), A. Breskin(1), S. Shchemelinin(1), A. Roy(2), A. Tesi(1), D. Vartsky(1), and S. Bressler(1) (1) Dept. of Astrophysics & Particle Physics, Weizmann Institute of Science, Israel (2) Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Israel LIDINE 2019 Manchester, August 2019

Hole-electrodes Gas Electron Multiplier GEM Thick Gas Electron Multiplier - THGEM (a.k.a. LEM)

New concept: generating electroluminescence in a bubble “hole-electrode” 𝐸 𝑉 𝑡𝑜𝑝 𝑉 𝑏𝑜𝑡𝑡𝑜𝑚 VUV photon 𝑒 − 𝑒 − Cs I Resistive wires Light readout (e.g. PMT , SiPM) Noble liquid (LXe / LAr) L. Arazi et al. 2015 JINST 10 P08015 [arXiv:1505.02316] & E. Erdal et al. 2015 JINST 10 P11002 [arXiv:1509.02354]

Small Liquid Xenon Cryostat CAMERA E. Erdal et al. 2015 JINST 10 P11002 [arXiv:1509.02354]

Bubble Inflation E. Erdal et al. 2015 JINST 10 P11002 [arXiv:1509.02354]

Combined light and charge readout 1 𝑒 −  flash of ~400 VUV photons E. Erdal et al. 2018 JINST 13 P12008 [arXiv:1708.06645]

Response of different electrodes E. Erdal et al. 2018 JINST 13 P12008 [arXiv:1708.06645]

Charge multiplication in the bubble Apply strong electric field between bottom of electrode and wires E. Erdal et al. 2018 JINST 13 P12008 [arXiv:1708.06645]

Image of 241Am source with pixelated readout LHM reconstruction 3.9mm dia. Resolution: σ≈200 μm E. Erdal et al. 2019 JINST 14 P01028 [arXiv:1812.00780]

NEW: It works also in Liquid Argon! Same setup, No CsI on top of the THGEM: S2 only arXiv:1908.04974 (to be submitted to JINST)

Towards single photon sensing: Effective CsI Quantum Efficiency in LXe 𝐸 – energy of alpha particle 𝑊 𝑠 – mean energy per photon 𝑓 – rate of alpha emission into LXe Ω – solid angle towards photocathode 𝑇 – Mesh transmission 𝐼= 𝐸 𝑊 𝑠 ⋅𝑓⋅ Ω 4𝜋 ⋅𝑇⋅ 𝑒 − ⋅ 𝑄 𝐸 𝑒𝑓𝑓 Similar values measured also by: E. Aprile et al., NIM A 338 (1994) 328-335

Towards single photon sensing: Effective CsI Quantum Efficiency in LXe Expected PDE: 𝟏 𝑨 ∫𝑸𝑬 𝑬 𝒙,𝒚 𝒅𝒙 𝒅𝒚 Expected PDE (THGEM): 15% Measured PDE: ~2% Expected PDE (GEM , SC-GEM): 22% Measured PDE: ~4%

Where are electrons lost? 1 𝑒 − 2 From liquid to gas: 0.69 eV potential barrier E. Erdal et al. 2018 JINST 13 P12008 [arXiv:1708.06645]

What is the shape of the bubble? How does it affect the EL signal? 𝑒 − Resistive wires Light readout Noble liquid (LXe / LAr)

We have a dream… for large-volume dark-matter detectors Part of the DARWIN generic R&D program: Aalbers, J., et al., Journal of Cosmology and Astroparticle Physics, 2016. 2016(11): p. 017

To conclude Imaging Stable bubble Light and charge detection Charge gain Different geometries Deeper? Shape of the bubble? Gliding electrons?

Backup slides

Boiling on the tip of a wire E. Erdal et al. 2015 JINST 10 P11002 [arXiv:1509.02354]

Bubble breathing E. Erdal et al. 2015 JINST 10 P11002 [arXiv:1509.02354]

Vertical bubbles LXe S1 S2 Bubble 241Am S2 S1 Et Ed To PMT Fine mesh α e S2 S1 4 mm LXe S1 Bubble Et Ed To PMT S2 Fine mesh 112 µm opening THGEM Heating wire

S1 dependence on THGEM voltage L. Arazi et al. 2015 JINST 10 P08015 [arXiv:1505.02316]

Electroluminescence “in THGEM holes” Threshold for electroluminescence: Vapor (@ 170K): ~ 2-3 kV/cm †† Liquid: 400 - 700 kV/cm ††† Indirect proof of bubble-assisted electroluminescence: killing light by abrupt pressure change. Interpretation: bubbles collapse! †††† Light gain @ 2kV ~ 600 UV photons / electron † † L. Arazi et al. 2013 JINST 8 C12004 [arXiv:1310.4074] ††C.M.B. Monteiro et al. 2007 JINST 2 P05001. ††† T. Doke, Nucl. Intrum. Meth. 196 (1982). †††† L. Arazi et al. 2015 JINST 10 P08015 [arXiv:1505.02316].

‘Classical’ dual-phase Time Projection Chamber Top PMTs anode GXe 𝑆 2 𝑆 1 𝑛𝑢𝑐𝑙𝑒𝑎𝑟 𝑟𝑒𝑐𝑜𝑖𝑙 𝑆 2 𝑆 1 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑟𝑒𝑐𝑜𝑖𝑙 Signal Background < Hit pattern on top PMT array  x,y Time difference 𝑡 2 − 𝑡 1  z S2/S1  background discrimination ~1 kV/cm ~10 kV/cm gate LXe cathode Dark matter particle Bottom PMTs Aalbers, J. et al., Journal of Cosmology and Astroparticle Physics, 2016. 2016(11): p. 017

Scaling up of ‘traditional’ dual-phase TPC Top PMTs 𝑆 2 ∝ 𝑁 𝑒 𝑑 𝑔𝑎𝑠 𝐸/𝜌 −𝑐𝑜𝑛𝑠𝑡 anode GXe 1 kV/cm 10 kV/cm gate S2 S2 S2 ≠ S2 LXe cathode Degradation of signal / noise ratio Bottom PMTs Aalbers, J. et al., Journal of Cosmology and Astroparticle Physics, 2016. 2016(11): p. 017