Encoding Light Intensity by the Cone Photoreceptor Synapse

Slides:



Advertisements
Similar presentations
Volume 122, Issue 7, Pages (July 2015)
Advertisements

NMDA Receptor Contributions to Visual Contrast Coding
Maturation of a Recurrent Excitatory Neocortical Circuit by Experience-Dependent Unsilencing of Newly Formed Dendritic Spines  Michael C. Ashby, John T.R.
Daw Neuron Volume 39, Issue 1, Pages (July 2003)
Steven H. DeVries, Wei Li, Shannon Saszik  Neuron 
Volume 76, Issue 3, Pages (November 2012)
Madoka Suzuki, Hideaki Fujita, Shin’ichi Ishiwata  Biophysical Journal 
Volume 37, Issue 5, Pages (March 2003)
Volume 71, Issue 5, Pages (September 2011)
Streamlined Synaptic Vesicle Cycle in Cone Photoreceptor Terminals
Volume 100, Issue 3, Pages (February 2011)
M.E. Schnee, D.M. Lawton, D.N. Furness, T.A. Benke, A.J. Ricci  Neuron 
Volume 79, Issue 1, Pages (July 2013)
Optic neuritis: A mechanistic view
Volume 49, Issue 1, Pages (January 2006)
James H. Marshel, Alfred P. Kaye, Ian Nauhaus, Edward M. Callaway 
Felice A. Dunn, Luca Della Santina, Edward D. Parker, Rachel O.L. Wong 
Le Chang, Tobias Breuninger, Thomas Euler  Neuron 
Retinal Representation of the Elementary Visual Signal
Coincidence Detection of Single-Photon Responses in the Inner Retina at the Sensitivity Limit of Vision  Petri Ala-Laurila, Fred Rieke  Current Biology 
Benjamin Odermatt, Anton Nikolaev, Leon Lagnado  Neuron 
Single-Photon Absorptions Evoke Synaptic Depression in the Retina to Extend the Operational Range of Rod Vision  Felice A. Dunn, Fred Rieke  Neuron  Volume.
Sidney P. Kuo, Gregory W. Schwartz, Fred Rieke  Neuron 
Joseph M. Johnson, William J. Betz  Biophysical Journal 
Figure 1 Example OCT scan
First Node of Ranvier Facilitates High-Frequency Burst Encoding
Hiroshi Makino, Roberto Malinow  Neuron 
CDK5 Serves as a Major Control Point in Neurotransmitter Release
Aleksander Sobczyk, Karel Svoboda  Neuron 
Mechanism of High-Frequency Signaling at a Depressing Ribbon Synapse
Two Distinct Pools of Synaptic Vesicles in Single Presynaptic Boutons in a Temperature- Sensitive Drosophila Mutant, shibire  Hiroshi Kuromi, Yoshiaki.
Responses of Collicular Fixation Neurons to Gaze Shift Perturbations in Head- Unrestrained Monkey Reveal Gaze Feedback Control  Woo Young Choi, Daniel.
Volume 66, Issue 4, Pages (May 2010)
A Map for Horizontal Disparity in Monkey V2
Yongling Zhu, Jian Xu, Stephen F. Heinemann  Neuron 
Recruitment of N-Type Ca2+ Channels during LTP Enhances Low Release Efficacy of Hippocampal CA1 Perforant Path Synapses  Mohsin S. Ahmed, Steven A. Siegelbaum 
Volume 31, Issue 6, Pages (September 2001)
High-Density Presynaptic Transporters Are Required for Glutamate Removal from the First Visual Synapse  Jun Hasegawa, Takehisa Obara, Kohichi Tanaka,
Volume 48, Issue 6, Pages (December 2005)
Volume 80, Issue 5, Pages (December 2013)
Benjamin Scholl, Daniel E. Wilson, David Fitzpatrick  Neuron 
Quantitative Imaging of Transcription in Living Drosophila Embryos Links Polymerase Activity to Patterning  Hernan G. Garcia, Mikhail Tikhonov, Albert.
Sung E. Kwon, Edwin R. Chapman  Neuron 
Felice A. Dunn, Luca Della Santina, Edward D. Parker, Rachel O.L. Wong 
Timescales of Inference in Visual Adaptation
Benjamin Scholl, Daniel E. Wilson, David Fitzpatrick  Neuron 
Volume 50, Issue 1, Pages (April 2006)
Volume 71, Issue 6, Pages (September 2011)
Tiago Branco, Kevin Staras, Kevin J. Darcy, Yukiko Goda  Neuron 
Volume 62, Issue 3, Pages (May 2009)
NMDA Receptor Contributions to Visual Contrast Coding
Dario Maschi, Vitaly A. Klyachko  Neuron 
Target-Specific Glycinergic Transmission from VGluT3-Expressing Amacrine Cells Shapes Suppressive Contrast Responses in the Retina  Nai-Wen Tien, Tahnbee.
Masayuki Matsumoto, Masahiko Takada  Neuron 
Supervised Calibration Relies on the Multisensory Percept
Volume 57, Issue 3, Pages (February 2008)
Volume 37, Issue 5, Pages (March 2003)
Kwoon Y. Wong, Felice A. Dunn, David M. Berson  Neuron 
Mobility of Synaptic Vesicles in Different Pools in Resting and Stimulated Frog Motor Nerve Terminals  Michael A. Gaffield, Silvio O. Rizzoli, William.
Mercè Izquierdo-Serra, Jan J. Hirtz, Ben Shababo, Rafael Yuste 
Volume 12, Issue 3, Pages (February 2002)
Inhomogeneous Encoding of the Visual Field in the Mouse Retina
Streamlined Synaptic Vesicle Cycle in Cone Photoreceptor Terminals
Volume 66, Issue 4, Pages (May 2010)
Sheila Nirenberg, Markus Meister  Neuron 
Madoka Suzuki, Hideaki Fujita, Shin’ichi Ishiwata  Biophysical Journal 
Maxwell H. Turner, Fred Rieke  Neuron 
Fig. 8. Electron micrographs taken from 8-week glaucoma retina
Juliana M. Rosa, Sabine Ruehle, Huayu Ding, Leon Lagnado  Neuron 
George D. Dickinson, Ian Parker  Biophysical Journal 
Presentation transcript:

Encoding Light Intensity by the Cone Photoreceptor Synapse Sue-Yeon Choi, Bart Borghuis, Ruth Rea, Edwin S. Levitan, Peter Sterling, Richard H. Kramer  Neuron  Volume 48, Issue 4, Pages 555-562 (November 2005) DOI: 10.1016/j.neuron.2005.09.011 Copyright © 2005 Elsevier Inc. Terms and Conditions

Figure 1 FM1-43 in the Intact Retina (A) Fluorescence images of a flat-mounted retina loaded with FM1-43. Seven different planes of focus (Z sections) are shown, extending from cone outer segments in the outer retina (top) to the nerve fiber layer (bottom) of retinal ganglion cells in the inner retina. Dashed lines show approximate corresponding depths in (B) and (C). The OPL is indicated with an arrow. Scale bar, 10 μm. (B and C) Virtual cross-sections of the retina generated from 700 Z sections scanned 300 nm apart through the retina. Fluorescence intensity is color coded as shown below. Scale bar, 30 μm. (B) Retina shortly after loading. (C) The same retina 45 min after unloading in the dark. Note the dramatic loss of dye in the OPL (arrows) and the modest loss in the OFF-sublamina of the IPL. (D) Difference image (C−B)/(B) showing fractional loss of fluorescence after unloading in the dark, color coded as shown below. OS, cone outer segment; IS, cone inner segment; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer; NFL, nerve fiber layer. Neuron 2005 48, 555-562DOI: (10.1016/j.neuron.2005.09.011) Copyright © 2005 Elsevier Inc. Terms and Conditions

Figure 2 Regulation of Exocytosis by Light and Dark (A) Fluorescence images showing unloading of FM1-43 in the dark from cone terminals in a Z section through the OPL. Two-photon scans were applied at 3 min intervals. The numbers show elapsed time in minutes. Scale bar, 20 μm. (B) Unloading of FM1-43 in the dark, in steady light of different intensities (indicated on the right), or after application of high K+. Continuous curves show single exponential fits to the data with release time constants (in min) of 10.3 (dark), 17.5 (log 4), 22.0 (log 5), 35.5 (log 6), 266.3 (log 7), and 5.9 (high K+). n = 5–9 for each condition. (C) Effects of temporal resolution on release. Measured (open squares) and predicted (filled diamonds) percent of dye released after exposure to repeated flashes for 20 min. The length of light (L) and dark (D) periods are indicated on the abscissa. Light intensity of 106 photons/μm2/s was used. n = 2–6. (D) Dye release accurately reflects exocytosis in the dark. FM1-43 (open squares) and FM2-10 (gray triangles) release rates are similar, suggesting no significant contribution from kiss-and-run exocytosis. Release of FM1-43 in the dark is similar with 2 min (open squares) or 8 min (filled squares) 2-photon scans, indicating that infrared exposure did not alter release. Continuous lines show single exponential fits to the data. n = 4–5. Variability among data is expressed as mean ± SEM. Neuron 2005 48, 555-562DOI: (10.1016/j.neuron.2005.09.011) Copyright © 2005 Elsevier Inc. Terms and Conditions

Figure 3 Determination of the Size of Cycling Pool of Vesicles in the Cone Synapse (A) Density of vesicles was calculated from ultrathin EM sections, 0.08 μm thick. R, synaptic ribbon. Scale bar, 1 μm. Inset shows the distribution of densities in 19 sections. (B) 3D reconstruction of a cone terminal from a series of ultrathin EM sections. Ribbons are in red. Inset shows the distribution of volumes from 14 terminals. (C) Electron micrographs showing that control vesicles (left) have a dark perimeter and a bright center; AM1-43 photoconverted vesicles (right) have a dark perimeter and an even darker center. Color-coded optical density profiles for each are shown below. Scale bar, 20 nm. (D) Amplitude histogram of optical density values of vesicles from control (blue circles) and AM1-43 photoconverted terminals (red circles) are fitted with a single Gaussian (blue line) or the sum of two Gaussians (dashed and red lines), respectively. Neuron 2005 48, 555-562DOI: (10.1016/j.neuron.2005.09.011) Copyright © 2005 Elsevier Inc. Terms and Conditions

Figure 4 Intensity Coding at the Cone Synapse (A) The input-output relation of the cone synapse. Vesicle release rates (filled circles) at different light intensities are fitted with a sigmoidal function (thick line). Thin lines represent confidence levels from a single-trial two-alternative forced-choice test. (B) Cone vesicle release can encode a limited number (10) of distinct gray scales of light intensity. Steps show increments of intensity that can be reliably distinguished by changes in release rate, assuming Poisson statistics apply. (C) Predicted contrast sensitivity of the cone photoreceptor, by using an ideal observer model, with increments of light above background (thin line) and decrements below background (thick line). Neuron 2005 48, 555-562DOI: (10.1016/j.neuron.2005.09.011) Copyright © 2005 Elsevier Inc. Terms and Conditions