Structure of the laser-chemical tailored spongy Ni(TPA/TEG) catalyst

Slides:



Advertisements
Similar presentations
Fig. 2 Nonlinearities in a cavity-embedded perovskite single crystal.
Advertisements

Fig. 2 Transport properties of a BP transistor at low temperature.
Fig. 2 Global production, use, and fate of polymer resins, synthetic fibers, and additives (1950 to 2015; in million metric tons). Global production, use,
Vibrational spectra of medieval human bones (Leopoli-Cencelle, Italy)
Fig. 5 Thermal conductivity of n-type ZrCoBi-based half-Heuslers.
Fig. 1 Map of water stress and shale plays.
Fig. 1 Crystal and electronic structure of WTe2.
Fig. 1 Examples of experimental stimuli and behavioral performance.
Fig. 3 Electron PSD in various regions.
Fig. 4 Resynthesized complex boronic acid derivatives based on different scaffolds on a millimole scale and corresponding yields. Resynthesized complex.
Fig. 6 Comparison of properties of water models.
Fig. 1 Mean and median RCR (Relative Citation Ratio) of Roadmap Epigenomics Program research articles for each year. Mean and median RCR (Relative Citation.
Fig. 3 Scan rate effects on the layer edge current.
Fig. 3 Rotation experiment, setup.
Fig. 1 Product lifetime distributions for the eight industrial use sectors plotted as log-normal probability distribution functions (PDF). Product lifetime.
Fig. 3 Phase-contrast imaging.
Fig. 1 Parameterization and temporal distribution of carbon isotopic events in the database. Parameterization and temporal distribution of carbon isotopic.
Fig. 1 Distribution of total and fake news shares.
Fig. 2 2D QWs of different propagation lengths.
Fig. 3 Alch-MC design and self-assembly of a previously unreported novel crystal structure with no known atomic equivalent. Alch-MC design and self-assembly.
Fig. 1 Structure of L10-IrMn.
Fig. 6 WPS imaging of different chemical components in living cells.
Fig. 1 Energy levels and laser couplings of the inelastic optical WM-enhanced NMOR effect. Energy levels and laser couplings of the inelastic optical WM-enhanced.
Fig. 1 Histograms of the number of first messages received by men and women in each of our four cities. Histograms of the number of first messages received.
Fig. 5 Schematic phase diagrams of Ising spin systems and Mott transition systems. Schematic phase diagrams of Ising spin systems and Mott transition systems.
Characteristics of ultrathin single-crystalline semiconductor films
Fig. 1 X-ray scattering and EBSD analyses of the bulk Fe25Co25Ni25Al10Ti15 HEA. X-ray scattering and EBSD analyses of the bulk Fe25Co25Ni25Al10Ti15 HEA.
Fig. 4 OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with different pH. OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with.
Fig. 1 Average contribution (million metric tons) of seafood-producing sectors, 2009–2014. Average contribution (million metric tons) of seafood-producing.
Fig. 4 Two-color photoinitiation and photoinhibition enable controllable, far-surface patterning of complex 3D structures. Two-color photoinitiation and.
Fig. 3 GIWAXS pattern of perovskite films with varied ligands.
Fig. 4 The mechanical performances of thermally stable click-ionogels.
Fig. 4 Praying Prophet by Lorenzo Monaco: Mapping lake pigments and associated substrate. Praying Prophet by Lorenzo Monaco: Mapping lake pigments and.
Fig. 1 Cross-sectional images of He-implanted V/Cu/V samples.
Fig. 5 TEM observation of moganite.
Fig. 1 Anatomy of a metallic NC network.
Fig. 2 Characterization of ZnxCo1−xO NRs.
Fig. 4 Generation of liquid products on metal-decorated Ni(TPA/TEG) composites. Generation of liquid products on metal-decorated Ni(TPA/TEG) composites.
Fig. 2 Comparison of laser-chemical tailored Ni(TPA/TEG) and Ni(TPA) composites. Comparison of laser-chemical tailored Ni(TPA/TEG) and Ni(TPA) composites.
Fig. 2 Schematic drawings of Göbekli Tepe skulls.
Fig. 1 Size fractions of MPPs in different fertilizers.
Fig. 2 Sampling. Sampling. (A) Extant stratigraphic section. Zenithal (B) and frontal (C) views of the flowstone capping the excavated deposit. The rectangle.
Fig. 2 Comparison of 1L, 2L, and 3L single crystals.
Fig. 5 Comparison of the liquid products generated from photocatalytic CO2 reduction reactions (CO2RR) and CO reduction reactions (CORR) on two catalysts.
Fig. 5 Skull 1: Tentative reconstruction.
Fig. 2 NP characterization.
Fig. 1 Location of the Jirzankal Cemetery.
Fig. 4 Map of δ18OVSMOW in groundwaters of the British Isles (left) and Strontium (87Sr/86Sr) biosphere map of Great Britain (right). Map of δ18OVSMOW.
Fig. 4 CO2 emission changes triggered by the JJJ clean air policy.
Fig. 2 Normal-incidence 2PPE PEEM results.
Fig. 3 Comparisons of NDVI trends over the globally vegetated areas from 1982 to Comparisons of NDVI trends over the globally vegetated areas from.
Fig. 3 Electronic conductivity studies.
Fig. 1 Schematic depiction of a paradigm for rapid and guided discovery of materials through iterative combination of ML with HiTp experimentation. Schematic.
Fig. 4 Mapping of abundance of the most dominant bacterial and archaeal phyla across France. Mapping of abundance of the most dominant bacterial and archaeal.
Fig. 4 Spatial mapping of the distribution and intensity of industrial fishing catch. Spatial mapping of the distribution and intensity of industrial fishing.
Fig. 1 Chemical structures of the bioconjugates.
Fig. 4 Single-particle contact angle measurements.
Fig. 3 TEM evidence of carbon doping in WS2.
Fig. 3 Supraballs and films assembled from binary 219/217nm SPs/SMPs.
Fig. 2 Supraballs and films from binary SPs.
Fig. 3 Performance of the generative model G, with and without stack-augmented memory. Performance of the generative model G, with and without stack-augmented.
Fig. 4 Behavior of resistance peak near density nm = 5.
Fig. 1 Structure and basic properties of EuTiO3 (ETO) films.
Fig. 2 Comparison between the different reflective metasurface proposals when θi = 0° and θr = 70°. Comparison between the different reflective metasurface.
Fig. 1 Design principle and SEM characterization of super-origami DNA nanostructures with n-tuples. Design principle and SEM characterization of super-origami.
Fig. 1 Overview of amber clast with synchrotron x-ray μCT image of articulated snake skeleton (DIP-S-0907). Overview of amber clast with synchrotron x-ray.
Fig. 3 TEM images of 80-nm-thin cuts of spongin carbonized at 1200°C.
Fig. 1 STEM data: Original and processed by neural networks.
Comparison of STM data on point impurities with DFT calculations
Fig. 3 Calculated electronic structure of ZrCoBi.
Presentation transcript:

Fig. 1 Structure of the laser-chemical tailored spongy Ni(TPA/TEG) catalyst. Structure of the laser-chemical tailored spongy Ni(TPA/TEG) catalyst. (A) Scanning TEM (STEM) images and energy-dispersive x-ray spectroscopy (EDX) mapping of the spongy Ni(TPA/TEG) nanostructure. (B) STEM image of the Ni(TPA/TEG) particles. (C) Three-dimensional tomographic reconstruction of a fraction of spongy Ni(TPA/TEG) composite (movie S1). (D) TEM image of the spongy Ni(TPA/TEG) nanostructure. The inset high-resolution TEM image displays the defective (020) lattices [d(020) = 1.02 nm] of an orthorhombic crystal. (E) Scanning electron nanodiffraction series taken from the Ni(TPA/TEG) particle by a scanning nanoprobe with an electron beam size of ~3 nm. The probe step size is 10 nm with an exposure time of 0.5 s at each step and a total beam current of ~5 pA. (F) Diffraction patterns showing the [100] and [111] orientations of the orthorhombic Ni(TPA/TEG) composite (movies S2 and S3). The dimensions of the diffraction patterns are 11.9 nm−1 × 11.9 nm−1. Kaiyang Niu et al. Sci Adv 2017;3:e1700921 Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).