Semiconductor Device Modeling & Characterization Lecture 23

Slides:



Advertisements
Similar presentations
Semiconductor Device Modeling and Characterization – EE5342 Lecture 35 – Spring 2011 Professor Ronald L. Carter
Advertisements

Semiconductor Device Modeling and Characterization – EE5342 Lecture 6 – Spring 2011 Professor Ronald L. Carter
L28 April 281 EE5342 – Semiconductor Device Modeling and Characterization Lecture 28 - Spring 2005 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011 Professor Ronald L. Carter
L30 May 61 EE5342 – Semiconductor Device Modeling and Characterization Lecture 30 - Spring 2004 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2010 Professor Ronald L. Carter
L23 08April031 Semiconductor Device Modeling and Characterization EE5342, Lecture 23 Spring 2003 Professor Ronald L. Carter
Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 5 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter
L19 26Mar021 Semiconductor Device Modeling and Characterization EE5342, Lecture 19 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
EE5342 – Semiconductor Device Modeling and Characterization Lecture 23 April 12, 2010 Professor Ronald L. Carter
L26 April 261 EE5342 – Semiconductor Device Modeling and Characterization Lecture 26 - Spring 2005 Professor Ronald L. Carter
Professor Ronald L. Carter
Field-Effect Transistors Based on Chapter 11 of the textbook
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
Professor Ronald L. Carter
6.3.3 Short Channel Effects When the channel length is small (less than 1m), high field effect must be considered. For Si, a better approximation of field-dependent.
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2010
Sedr42021_0434.jpg Figure 4.34 Conceptual circuit utilized to study the operation of the MOSFET as a small-signal amplifier.
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011
Lecture 16 ANNOUNCEMENTS OUTLINE MOS capacitor (cont’d)
Professor Ronald L. Carter
Lecture 19 OUTLINE The MOSFET: Structure and operation
منبع: & کتابMICROELECTRONIC CIRCUITS 5/e Sedra/Smith
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2009
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Last Lecture – MOS Transistor Review (Chap. #3)
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 27 - Fall 2003
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
EXAMPLE 7.1 BJECTIVE Determine the total bias current on an IC due to subthreshold current. Assume there are 107 n-channel transistors on a single chip,
Lecture 20 OUTLINE The MOSFET (cont’d)
EE 5340 Semiconductor Device Theory Lecture 23 - Fall 2003
Lecture 20 OUTLINE The MOSFET (cont’d)
Professor Ronald L. Carter
Semiconductor Device Modeling & Characterization Lecture 19
EE 2303/001 - Electronics I Summer 2001 Lecture 15
Semiconductor Device Modeling & Characterization Lecture 21
Semiconductor Device Modeling & Characterization Lecture 20
EE 5340 Semiconductor Device Theory Lecture 29 - Fall 2010
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2003
Presentation transcript:

Semiconductor Device Modeling & Characterization Lecture 23 Professor Ronald L. Carter ronc@uta.edu Spring 2001 L23 April 10

MOSFET equivalent circuit elements Fig 10.51* L23 April 10

MOS small-signal equivalent circuit Fig 10.52* L23 April 10

MOS channel- length modulation Fig 11.5* L23 April 10

Analysis of channel length modulation L23 April 10

Channel length mod- ulated drain char Fig 11.6* L23 April 10

Fully biased n- channel VT calc L23 April 10

Q’d,max and xd,max for biased MOS capacitor Fig 8.11** |Q’d,max|/q (cm-2) xd,max (microns) L23 April 10

L23 April 10

L23 April 10

L23 April 10

Values for fms with silicon gate L23 April 10

I-V relation for n-MOS ohmic ID non-physical ID,sat saturated VDS,sat L23 April 10

Analysis of channel length modulation L23 April 10

Associating the output conductance ID ID,sat VDS,sat VDS L23 April 10

n-channel enhancement MOSFET in ohmic region 0< VT< VG e- channel ele + implant ion Channel VS = 0 0< VD< VDS,sat EOx,x> 0 n+ e-e- e- e- e- + + + + + + + + + + + + n+ Depl Reg p-substrate Acceptors VB < 0 L23 April 10

Ion implantation L23 April 10

“Dotted box” approx L23 April 10

L23 April 10

Mobilities L23 April 10

Fully biased n- channel VT calc L23 April 10

Subthreshold conduction Below O.S.I., when the total band-bending < 2|fp|, the weakly inverted channel conducts by diffusion like a BJT. Since VGS>VDS, and below OSI, then Na>nS >nD, and electr diffuse S --> D Electron concentration at Source Concentration gradient driving diffusion L23 April 10

Subthreshold current data Figure 10.1** Figure 11.4* L23 April 10

Mobility variation due to Edepl Figures 11.7,8,9* L23 April 10

Velocity saturation effects Figure 11.10* L23 April 10

References *Semiconductor Physics and Devices, by Donald A. Neamen, Irwin, Chicago, 1997. **Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986 L23 April 10