Quadratic Functions and Equations Lesson 1: Graphing Quadratic Functions.

Slides:



Advertisements
Similar presentations
Vocabulary axis of symmetry standard form minimum value maximum value.
Advertisements

By: Silvio, Jacob, and Sam.  Linear Function- a function defined by f(x)=mx+b  Quadratic Function-a function defined by f(x)=ax^2 + bx+c  Parabola-
MM2A3c Investigate and explain characteristics of quadratic function, including domain, range, vertex, axis of symmetry, zeros, intercepts, extrema, intervals.
If the leading coefficient of a quadratic equation is positive, then the graph opens upward. axis of symmetry f(x) = ax2 + bx + c Positive #
Solving Quadratic Equations by Graphing
And the Quadratic Equation……
1.8 QUADRATIC FUNCTIONS A function f defined by a quadratic equation of the form y = ax 2 + bx + c or f(x) = ax 2 + bx + c where c  0, is a quadratic.
The General Quadratic Function Students will be able to graph functions defined by the general quadratic equation.
Holt McDougal Algebra Properties of Quadratic Functions in Standard Form This shows that parabolas are symmetric curves. The axis of symmetry is.
9.1: GRAPHING QUADRATICS ALGEBRA 1. OBJECTIVES I will be able to graph quadratics: Given in Standard Form Given in Vertex Form Given in Intercept Form.
Quadratic Functions. How Parabolas Open A parabola will open upward if the value of a in your equations is positive-this type of parabola will have.
Graphing Quadratic Equations
6.1 Graphing Quadratic Functions Parabola Axis of symmetry Vertex.
Graphing Quadratic Functions (2.1.1) October 1st, 2015.
2.3 Quadratic Functions. A quadratic function is a function of the form:
4.1 Quadratic Functions and Transformations A parabola is the graph of a quadratic function, which you can write in the form f(x) = ax 2 + bx + c, where.
Holt McDougal Algebra Properties of Quadratic Functions in Standard Form Warm Up Give the coordinate of the vertex of each function. 2. f(x) = 2(x.
Section 3.1 Review General Form: f(x) = ax 2 + bx + c How the numbers work: Using the General.
Section 3.3 Quadratic Functions. A quadratic function is a function of the form: where a, b, and c are real numbers and a 0. The domain of a quadratic.
CHAPTER 10 LESSON OBJECTIVES. Objectives 10.1 Students will be able to: Identify quadratic functions and determine whether they have a minimum or maximum.
5-1 Graphing Quadratic Functions Algebra II CP. Vocabulary Quadratic function Quadratic term Linear term Constant term Parabola Axis of symmetry Vertex.
Quadratic Functions. 1. The graph of a quadratic function is given. Choose which function would give you this graph:
4.2 Standard Form of a Quadratic Function The standard form of a quadratic function is f(x) = ax² + bx + c, where a ≠ 0. For any quadratic function f(x)
Bellwork  Identify the domain and range of the following quadratic functions
GRAPH QUADRATIC FUNCTIONS. FIND AND INTERPRET THE MAXIMUM AND MINIMUM VALUES OF A QUADRATIC FUNCTION. 5.1 Graphing Quadratic Functions.
SAT Problem of the Day. 5.5 The Quadratic Formula 5.5 The Quadratic Formula Objectives: Use the quadratic formula to find real roots of quadratic equations.
Lesson 8-1 :Identifying Quadratic Functions Lesson 8-2 Characteristics of Quadratic Functions Obj: The student will be able to 1) Identify quadratic functions.
Graphing Quadratic Functions Digital Lesson. 2 Quadratic function Let a, b, and c be real numbers a  0. The function f (x) = ax 2 + bx + c is called.
Solving Quadratic Equation by Graphing
Chapter 3 Quadratic Functions
Section 4.1 Notes: Graphing Quadratic Functions
f(x) = x2 Let’s review the basic graph of f(x) = x2 x f(x) = x2 -3 9
IB STUDIES Graphing Quadratic Functions
Give the coordinate of the vertex of each function.
Algebra Lesson 10-2: Graph y = ax2 + bx + c
Warm Up /05/17 1. Evaluate x2 + 5x for x = -4 and x = 3. __; ___
Algebra I Section 9.3 Graph Quadratic Functions
Warm Up /31/17 1. Evaluate x2 + 5x for x = 4 and x = –3. __; ___
Quadratic Functions and Their Properties
4.2 a Standard Form of a Quadratic Function
Notes 3.3 Quadratic Functions
Using the Vertex Form of Quadratic Equations
Solving Quadratic Equation and Graphing
Properties of Quadratic Functions in Standard Form 5-1
Graphing Quadratics in Standard Form
ALGEBRA I : SECTION 9-1 (Quadratic Graphs and Their Properties)
Solving Quadratic Equation by Graphing
Solving a Quadratic Equation by Graphing
parabola up down vertex Graph Quadratic Equations axis of symmetry
3.1 Quadratic Functions and Models
Solving Quadratic Equation by Graphing
Find the x-coordinate of the vertex
Graphing Quadratic Functions (2.1.1)
Solving Quadratic Equation by Graphing
Characteristics of Quadratic functions
Review: Simplify.
Warm Up Evaluate (plug the x values into the expression) x2 + 5x for x = 4 and x = –3. 2. Generate ordered pairs for the function y = x2 + 2 with the.
Solving Quadratic Equation by Graphing
Some Common Functions and their Graphs – Quadratic Functions
Solving Quadratic Equation
3.1 Quadratic Functions and Models
Unit 9 Review.
Linear and Quadratic Functions
Bellwork: 2/23/15 1. Graph y = x2 + 4x + 3.
Section 10.2 “Graph y = ax² + bx + c”
Graphing Quadratic Functions
Warm up Graph the Function using a table Use x values -1,0,1,2,3
Quadratic Functions and Their Properties
Graphing f(x) = (x - h) + k 3.3A 2 Chapter 3 Quadratic Functions
f(x) = x2 Let’s review the basic graph of f(x) = x2 x f(x) = x2 -3 9
Presentation transcript:

Quadratic Functions and Equations Lesson 1: Graphing Quadratic Functions

The standard form of a quadratic function is f (x) = ax 2 + bx + c where a, b and c are real numbers and a  0. Its graph is called parabola. Every parabola is symmetrical about a line called the axis of symmetry x y Axis of symmetry f (x) = ax 2 + bx + c Vertex Characteristics of quadratic functions The y-intercept: c

When a > 0 the graph opens upward and the vertex is the minimum x y f(x) = ax 2 + bx + c a > 0 opens upward vertex minimum When a < 0 the graph opens downward and the vertex is the minimum x y f(x) = ax 2 + bx + c a < 0 opens downward vertex maximum The domain: All real numbers IR Exercise: Find the characteristics of the following quadratic function, the domain and its range. y = 2x 2 + 4x – 3