Malin Persson, Elina Bengtsson, Lasse ten Siethoff, Alf Månsson 

Slides:



Advertisements
Similar presentations
Michiko Tashiro, Hana Inoue, Masato Konishi  Biophysical Journal 
Advertisements

Kinetic Hysteresis in Collagen Folding
Volume 98, Issue 3, Pages (February 2010)
A Link between Hinge-Bending Domain Motions and the Temperature Dependence of Catalysis in 3-Isopropylmalate Dehydrogenase  István Hajdú, András Szilágyi,
Goran Žagar, Patrick R. Onck, Erik van der Giessen  Biophysical Journal 
Peter J. Mulligan, Yi-Ju Chen, Rob Phillips, Andrew J. Spakowitz 
Motor Force Homeostasis in Skeletal Muscle Contraction
Volume 99, Issue 1, Pages (July 2010)
Volume 101, Issue 4, Pages (August 2011)
One-Dimensional Mathematical Model of the Atrioventricular Node Including Atrio- Nodal, Nodal, and Nodal-His Cells  S. Inada, J.C. Hancox, H. Zhang, M.R.
Dynamics of Active Semiflexible Polymers
Volume 113, Issue 12, Pages (December 2017)
Andrés Jara-Oseguera, León D. Islas  Biophysical Journal 
Calcium Regulation of Myosin-I Tension Sensing
Lara Scharrel, Rui Ma, René Schneider, Frank Jülicher, Stefan Diez 
Mechanics and Buckling of Biopolymeric Shells and Cell Nuclei
Volume 111, Issue 2, Pages (July 2016)
Volume 36, Issue 2, Pages (January 2016)
Modes of Diffusion of Cholera Toxin Bound to GM1 on Live Cell Membrane by Image Mean Square Displacement Analysis  Pierre D.J. Moens, Michelle A. Digman,
Luthur Siu-Lun Cheung, Konstantinos Konstantopoulos 
Physiological Pathway of Magnesium Influx in Rat Ventricular Myocytes
Volume 96, Issue 2, Pages (January 2009)
Volume 98, Issue 11, Pages (June 2010)
Mechanical Distortion of Single Actin Filaments Induced by External Force: Detection by Fluorescence Imaging  Togo Shimozawa, Shin'ichi Ishiwata  Biophysical.
Experimental and Computational Studies Investigating Trehalose Protection of HepG2 Cells from Palmitate-Induced Toxicity  Sukit Leekumjorn, Yifei Wu,
Mechanics and Buckling of Biopolymeric Shells and Cell Nuclei
Macromolecular Crowding Modulates Actomyosin Kinetics
Volume 5, Issue 4, Pages e4 (October 2017)
Volume 103, Issue 4, Pages (August 2012)
Francesca Pennacchietti, Travis J. Gould, Samuel T. Hess 
Shu-Chun Cheng, Gu-Gang Chang, Chi-Yuan Chou  Biophysical Journal 
Volume 79, Issue 2, Pages (August 2000)
Gerald Offer, K.W. Ranatunga  Biophysical Journal 
Taeyoon Kim, Margaret L. Gardel, Ed Munro  Biophysical Journal 
Volume 114, Issue 12, Pages (June 2018)
Volume 100, Issue 5, Pages (March 2011)
Mechanism of Force Generation of a Viral DNA Packaging Motor
Volume 111, Issue 7, Pages (October 2016)
Arijit Maitra, Ken A. Dill  Biophysical Journal 
V.M. Burlakov, R. Taylor, J. Koerner, N. Emptage  Biophysical Journal 
Paolo Mereghetti, Razif R. Gabdoulline, Rebecca C. Wade 
Volume 103, Issue 2, Pages (July 2012)
Volume 100, Issue 7, Pages (April 2011)
Florian Hinzpeter, Ulrich Gerland, Filipe Tostevin  Biophysical Journal 
Kinetic Hysteresis in Collagen Folding
Volume 88, Issue 6, Pages (June 2005)
Volume 96, Issue 5, Pages (March 2009)
Troponin-Tropomyosin: An Allosteric Switch or a Steric Blocker?
Cyclic N-Terminal Loop of Amylin Forms Non Amyloid Fibers
Thermodynamic Characterization of the Unfolding of the Prion Protein
Dynamics of Active Semiflexible Polymers
Jonathan E. Hiorns, Oliver E. Jensen, Bindi S. Brook 
Toshinori Namba, Masatoshi Nishikawa, Tatsuo Shibata 
Satomi Matsuoka, Tatsuo Shibata, Masahiro Ueda  Biophysical Journal 
Phosphatase Specificity and Pathway Insulation in Signaling Networks
Elementary Functional Properties of Single HCN2 Channels
Cell Growth and Size Homeostasis in Silico
Interaction of Oxazole Yellow Dyes with DNA Studied with Hybrid Optical Tweezers and Fluorescence Microscopy  C.U. Murade, V. Subramaniam, C. Otto, Martin.
Bending and Puncturing the Influenza Lipid Envelope
Christina Karatzaferi, Marc K. Chinn, Roger Cooke  Biophysical Journal 
Mechanical Coupling between Myosin Molecules Causes Differences between Ensemble and Single-Molecule Measurements  Sam Walcott, David M. Warshaw, Edward P.
Inherent Force-Dependent Properties of β-Cardiac Myosin Contribute to the Force- Velocity Relationship of Cardiac Muscle  Michael J. Greenberg, Henry Shuman,
Mechanotransduction Dynamics at the Cell-Matrix Interface
The Role of Network Architecture in Collagen Mechanics
Probing the Dynamics of Clot-Bound Thrombin at Venous Shear Rates
Volume 98, Issue 7, Pages (April 2010)
Paolo Mereghetti, Razif R. Gabdoulline, Rebecca C. Wade 
Orientation of the Myosin Light Chain Region by Single Molecule Total Internal Reflection Fluorescence Polarization Microscopy  Margot E. Quinlan, Joseph.
Quantitative Modeling and Optimization of Magnetic Tweezers
Torque Transmission Mechanism via DELSEED Loop of F1-ATPase
Presentation transcript:

Nonlinear Cross-Bridge Elasticity and Post-Power-Stroke Events in Fast Skeletal Muscle Actomyosin  Malin Persson, Elina Bengtsson, Lasse ten Siethoff, Alf Månsson  Biophysical Journal  Volume 105, Issue 8, Pages 1871-1881 (October 2013) DOI: 10.1016/j.bpj.2013.08.044 Copyright © 2013 The Authors Terms and Conditions

Figure 1 Rate functions for cross-bridge transitions from the end of the power stroke (the AM∗ADP state) to the detached state, D. (A, C, and E) Standard conditions with kc = kc− = 2.8 pN/nm and Bell parameter (Eq. S24) xcrit = 0.6 nm but krigor(x) according to Nishizaka et al. (33). (B, D, and F) Nonlinear cross-bridge elasticity (kc− = 0.05kc) and strain-independent MgATP-induced detachment (xcrit = 0). Concentrations of MgATP were 5 mM (A and B), 0.1 mM MgATP (C and D), and 0.01 mM MgATP (E and F). Red, k2(x); blue, k5(x); orange, krigor(x); black solid line, composite rate function, kdiss, for transitions from the AM∗ADP to the D state (MATP/MADPPi); black dashed line, kdiss′, for transitions from the AMADP to the D state. The maximum value of any rate function set to 20,000 s−1 for practical reasons if not otherwise stated. Biophysical Journal 2013 105, 1871-1881DOI: (10.1016/j.bpj.2013.08.044) Copyright © 2013 The Authors Terms and Conditions

Figure 2 Velocity versus filament length at different [MgATP]. Data at 1 mM MgATP fitted by Eq. 4 after fixing vf∞ to the average velocity at filament lengths ≥2 μm and the duty ratio to a value calculated from ton and tcycle, as described in the text. For other MgATP concentrations, no fits were obtained. Instead, Eq. 4 was plotted using the duty ratio, and vf∞ was determined as described in the text and the parameter value ρ obtained from fitting Eq. 4 to the data at 1 mM MgATP. Biophysical Journal 2013 105, 1871-1881DOI: (10.1016/j.bpj.2013.08.044) Copyright © 2013 The Authors Terms and Conditions

Figure 3 [MgATP]-dependence of HMM propelled actin filament velocities. (A) Velocities in the absence (black) and presence (gray) of 1 mM amrinone. Experimental data are represented by solid circles (mean ± SE, n = 6 flow cells in the absence of amrinone and n = 3 in the presence of amrinone unless otherwise stated). The mean temperature was 28.2–29.2°C. Solid lines represent the Michaelis-Menten fits to experimental data. Dotted lines indicate the 95% confidence limits. See text for parameter values of Vmax and KM obtained in these fits. (B) Data in A limited to low [MgATP]. (C) Data in A as a double reciprocal plot. Solid lines (shown with 95% confidence limits) were obtained by linear regression, where the slope is equal to KM. (D) Velocity residuals from the Michaelis-Menten fits for 0–0.5mM MgATP (mean ± 95% confidence interval for three different HMM preparations; see Fig. S10) in the presence and absence of amrinone and for the model (Fig. S1, dashed line) with assumed interhead interactions. (Inset) Velocity residuals in the range 0–0.1 mM MgATP. Biophysical Journal 2013 105, 1871-1881DOI: (10.1016/j.bpj.2013.08.044) Copyright © 2013 The Authors Terms and Conditions

Figure 4 Modeling of experimental data using different versions of the statistical cross-bridge model. (A) Michaelis-Menten hyperbolic fits to the experimental data from Fig. 3 A (black) and simulated data (green circles). The standard parameter set (including strain-dependent MgATP-induced detachment and linear cross-bridge elasticity) with (open green symbols) and without (solid green symbols) MgATP-independent detachment (krigor(x)) from the rigor (AM) state. The dashed and solid lines represent Michaelis-Menten fits for each parameter set. (Inset) Details at low [MgATP]. (B) Double reciprocal plots of the data in A and C. Regression lines are fitted to all data. (C) Michaelis-Menten fits to the experimental data (black and gray; solid symbols and lines have the same meaning as in A) and the simulated data (open symbols and dashed lines), all with nonlinear cross-bridge elasticity (kc− = 0.05kc) and MgATP-independent detachment, (krigor(x)). Open blue squares, no amrinone, strain independence of MgATP-induced detachment (xcrit = 0 nm). Open gray squares, 1 mM amrinone, strain independence of MgATP-induced detachment (xcrit = 0 nm). Open blue circles, no amrinone, strain dependence of MgATP-induced detachment (xcrit = 0.6 nm). (D) Details of data in C at low [MgATP]. Biophysical Journal 2013 105, 1871-1881DOI: (10.1016/j.bpj.2013.08.044) Copyright © 2013 The Authors Terms and Conditions

Biophysical Journal 2013 105, 1871-1881DOI: (10. 1016/j. bpj. 2013. 08 Copyright © 2013 The Authors Terms and Conditions

Biophysical Journal 2013 105, 1871-1881DOI: (10. 1016/j. bpj. 2013. 08 Copyright © 2013 The Authors Terms and Conditions