Volume 102, Issue 9, Pages (May 2012)

Slides:



Advertisements
Similar presentations
Probing α-310 Transitions in a Voltage-Sensing S4 Helix
Advertisements

Volume 111, Issue 10, Pages (November 2016)
Probing α-310 Transitions in a Voltage-Sensing S4 Helix
Investigation of Domain Formation in Sphingomyelin/Cholesterol/POPC Mixtures by Fluorescence Resonance Energy Transfer and Monte Carlo Simulations  Monica.
Laurdan Fluorescence Lifetime Discriminates Cholesterol Content from Changes in Fluidity in Living Cell Membranes  Ottavia Golfetto, Elizabeth Hinde,
Quantitative Coherent Anti-Stokes Raman Scattering Imaging of Lipid Distribution in Coexisting Domains  Li Li, Haifeng Wang, Ji-Xin Cheng  Biophysical.
Rapid Assembly of a Multimeric Membrane Protein Pore
Sphingomyelin/Phosphatidylcholine/Cholesterol Phase Diagram: Boundaries and Composition of Lipid Rafts  Rodrigo F.M. de Almeida, Aleksandre Fedorov, Manuel.
Volume 99, Issue 6, Pages (September 2010)
Volume 99, Issue 10, Pages (November 2010)
Physical Properties of Escherichia coli Spheroplast Membranes
Volume 112, Issue 7, Pages (April 2017)
Composition Fluctuations in Lipid Bilayers
Phase Transitions in Biological Systems with Many Components
Joseph M. Johnson, William J. Betz  Biophysical Journal 
Aleš Benda, Yuanqing Ma, Katharina Gaus  Biophysical Journal 
Volume 98, Issue 12, Pages (June 2010)
Near-Critical Fluctuations and Cytoskeleton-Assisted Phase Separation Lead to Subdiffusion in Cell Membranes  Jens Ehrig, Eugene P. Petrov, Petra Schwille 
Volume 107, Issue 12, Pages (December 2014)
Volume 104, Issue 3, Pages (February 2013)
Modes of Diffusion of Cholera Toxin Bound to GM1 on Live Cell Membrane by Image Mean Square Displacement Analysis  Pierre D.J. Moens, Michelle A. Digman,
Mapping Diffusion in a Living Cell via the Phasor Approach
Single Vesicle Assaying of SNARE-Synaptotagmin-Driven Fusion Reveals Fast and Slow Modes of Both Docking and Fusion and Intrasample Heterogeneity  Sune.
Volume 108, Issue 7, Pages (April 2015)
Volume 101, Issue 7, Pages (October 2011)
Yong Wang, Paul Penkul, Joshua N. Milstein  Biophysical Journal 
Raft Formation in Lipid Bilayers Coupled to Curvature
H.M. Seeger, G. Marino, A. Alessandrini, P. Facci  Biophysical Journal 
Volume 114, Issue 12, Pages (June 2018)
Volume 114, Issue 5, Pages (March 2018)
Volume 93, Issue 2, Pages (July 2007)
Role of Cholesterol in the Formation and Nature of Lipid Rafts in Planar and Spherical Model Membranes  Jonathan M. Crane, Lukas K. Tamm  Biophysical.
Senthil Arumugam, Eugene P. Petrov, Petra Schwille  Biophysical Journal 
Volume 111, Issue 10, Pages (November 2016)
Volume 107, Issue 8, Pages (October 2014)
Volume 107, Issue 11, Pages (December 2014)
Paolo Mereghetti, Razif R. Gabdoulline, Rebecca C. Wade 
Sarah L. Veatch, Sarah L. Keller  Biophysical Journal 
Volume 105, Issue 9, Pages (November 2013)
Volume 110, Issue 3, Pages (February 2016)
G. Garbès Putzel, Mark J. Uline, Igal Szleifer, M. Schick 
Volume 108, Issue 7, Pages (April 2015)
Rapid Assembly of a Multimeric Membrane Protein Pore
Lipid Raft Composition Modulates Sphingomyelinase Activity and Ceramide-Induced Membrane Physical Alterations  Liana C. Silva, Anthony H. Futerman, Manuel.
Saswata Sankar Sarkar, Jayant B. Udgaonkar, Guruswamy Krishnamoorthy 
Dmitrii V. Vavilin, Esa Tyystjärvi, Eva-Mari Aro  Biophysical Journal 
Grischa R. Meyer, Justin Gullingsrud, Klaus Schulten, Boris Martinac 
The Effect of Dye-Dye Interactions on the Spatial Resolution of Single-Molecule FRET Measurements in Nucleic Acids  Nicolas Di Fiori, Amit Meller  Biophysical.
Lipid Bilayer Pressure Profiles and Mechanosensitive Channel Gating
Richa Dave, Daniel S. Terry, James B. Munro, Scott C. Blanchard 
Domain Formation in Model Membranes Studied by Pulsed-Field Gradient-NMR: The Role of Lipid Polyunsaturation  Andrey Filippov, Greger Orädd, Göran Lindblom 
Acyl Chain Length and Saturation Modulate Interleaflet Coupling in Asymmetric Bilayers: Effects on Dynamics and Structural Order  Salvatore Chiantia,
Saswata Sankar Sarkar, Jayant B. Udgaonkar, Guruswamy Krishnamoorthy 
Satomi Matsuoka, Tatsuo Shibata, Masahiro Ueda  Biophysical Journal 
Volume 111, Issue 4, Pages (August 2016)
Ion-Induced Defect Permeation of Lipid Membranes
Robust Driving Forces for Transmembrane Helix Packing
Areas of Monounsaturated Diacylphosphatidylcholines
Volume 108, Issue 7, Pages (April 2015)
Coarsening Dynamics of Domains in Lipid Membranes
Volume 99, Issue 11, Pages (December 2010)
Abir M. Kabbani, Christopher V. Kelly  Biophysical Journal 
Volume 98, Issue 1, Pages (January 2010)
Volume 103, Issue 11, Pages (December 2012)
Partially Assembled Nucleosome Structures at Atomic Detail
Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures
Volume 99, Issue 11, Pages (December 2010)
Volume 112, Issue 7, Pages (April 2017)
Paolo Mereghetti, Razif R. Gabdoulline, Rebecca C. Wade 
Laurdan Fluorescence Lifetime Discriminates Cholesterol Content from Changes in Fluidity in Living Cell Membranes  Ottavia Golfetto, Elizabeth Hinde,
Presentation transcript:

Volume 102, Issue 9, Pages 2104-2113 (May 2012) Dynamics and Size of Cross-Linking-Induced Lipid Nanodomains in Model Membranes  Martin Štefl, Radek Šachl, Jana Humpolíčková, Marek Cebecauer, Radek Macháň, Marie Kolářová, Lennart B.-Å. Johansson, Martin Hof  Biophysical Journal  Volume 102, Issue 9, Pages 2104-2113 (May 2012) DOI: 10.1016/j.bpj.2012.03.054 Copyright © 2012 Biophysical Society Terms and Conditions

Figure 1 Ternary phase diagram for DOPC/Sph/Cholesterol lipid mixtures given in the literature: solid curve, tie-lines, and the dotted curve were published by Smith et al. (16) and Farkas et al. (17), respectively. The line connecting points A to E denotes constant cholesterol content. All measurements were done in marked points A to E corresponding to the lipid compositions given in Table 1. Biophysical Journal 2012 102, 2104-2113DOI: (10.1016/j.bpj.2012.03.054) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 2 Upper part: autocorrelation curves for CTxB-647 in upper GUV membrane centered in the waist of the focal spot at different lipid compositions: A (black), B – low load of CTxB-647 (orange), B – high load of CTxB-647 (red), C (blue), D (olive), E (dark cyan). Lower part: intensity traces for CTxB-647 in B composed membranes at low (orange) and high (red) load of CTxB-647. Biophysical Journal 2012 102, 2104-2113DOI: (10.1016/j.bpj.2012.03.054) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 3 Apparent diffusion laws (dependence of the mean transition time through the illuminated spot on its relative size) obtained for diffusion of CTxB-647 in membranes composed of the lipid mixtures: A (open circles), B – low (diamonds), and high (solid squares) load of the cross-linker, and C (open squares). Diffusion law for BDP-DHPE (triangles) in B composed membrane at high cross-linker load is shown for comparison. Error bars represent standard errors of the mean. The dotted lines are guides for eyes, values of fitting parameters are given in Table S1. Biophysical Journal 2012 102, 2104-2113DOI: (10.1016/j.bpj.2012.03.054) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 4 FLIM-FRET phasor diagram depicting peak positions of the two-dimensional histogram of transformed donor fluorescence decay functions measured at every pixel of the GUV image. Upper part: fluorescence intensity images of CTxB-488 (donor) stained GUVs at different lipid compositions. GUVs are colabeled with DiD (acceptor). For D, two clusters appeared in the phasor diagram, corresponding to the Lo and Ld phase. The circular line depicts positions of monoexponential decays and position of the acceptor free decay, i.e., no FRET, is marked. Biophysical Journal 2012 102, 2104-2113DOI: (10.1016/j.bpj.2012.03.054) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 5 FLIM-FRET phasor diagram displaying shift of the CTxB-488 decay functions toward lower FRET when excess of a nonlabeled cross-linker is added. Upper part: CTxB-488 intensity images of the investigated GUV before and after adding of nonlabeled CTxB. No resolvable phase separation occurs. Biophysical Journal 2012 102, 2104-2113DOI: (10.1016/j.bpj.2012.03.054) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 6 Upper part: Best fitting χ2-square parameter as a function of the domain radius and the area domains take up in the bilayer. A minimum is found at R = 5 nm and domain area 9% for composition B (on the left), R = 8 nm and domain area 6% for composition B′ (in the middle), and at R = 24 nm and domain area 3% for the composition C (on the right). Lower part: Displayed time resolved fluorescence decays of CTxB-488 serving as the donor (D) representing the bilayer containing i), D only (green line); ii), D and A (acceptors) distributed between domain and nondomain regions (black line) and iii), D and A, where both D and A are uniformly distributed in the bilayer without any domains (blue line). The red line almost coinciding with the black line is the best fit calculated by means of MC simulations. Instrument response function is displayed too. Figures in the lower part correspond to those in the upper part. Biophysical Journal 2012 102, 2104-2113DOI: (10.1016/j.bpj.2012.03.054) Copyright © 2012 Biophysical Society Terms and Conditions