A TME-like Lattice for DA Studies

Slides:



Advertisements
Similar presentations
Dynamic Aperture Study for the Ion Ring Lattice Options Min-Huey Wang, Yuri Nosochkov MEIC Collaboration Meeting Fall 2015 Jefferson Lab, Newport News,
Advertisements

Nonlinear Dynamic Study of FCC-ee Pavel Piminov, Budker Institute of Nuclear Physics, Novosibirsk, Russia.
MEIC Electron Collider Ring Design Fanglei Lin MEIC Collaboration Meeting, October 5, 2015.
Present MEIC IR Design Status Vasiliy Morozov, Yaroslav Derbenev MEIC Detector and IR Design Mini-Workshop, October 31, 2011.
HF2014 Workshop, Beijing, China 9-12 October 2014 Challenges and Status of the FCC-ee lattice design Bastian Haerer Challenges.
First evaluation of Dynamic Aperture at injection for FCC-hh
JLEIC Electron Collider Ring Design and Polarization
JLEIC simulations status April 3rd, 2017
Review of new High Energy Rings
Ion Collider Ring: Design and Polarization
Large Booster and Collider Ring
Non-linear Beam Dynamics Studies for JLEIC Electron Collider Ring
First Look at Nonlinear Dynamics in the Electron Collider Ring
Optics Development for HE-LHC
Optimization of CEPC Dynamic Aperture
Electron collider ring Chromaticity Compensation and dynamic aperture
Nonlinear Dynamics and Error Study of the MEIC Ion Collider Ring
Error and Multipole Sensitivity Study for the Ion Collider Ring
DA Study for the CEPC Partial Double Ring Scheme
XII SuperB Project Workshop LAPP, Annecy, France, March 16-19, 2010
Collider Ring Optics & Related Issues
Ion Collider Ring Chromatic Compensation and Dynamic Aperture
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
Multipole Limit Survey of FFQ and Large-beta Dipole
Vertical Dogleg Options for the Ion Collider Ring
JLEIC Collider Rings’ Geometry Options
Progress on Non-linear Beam Dynamic Study
Feasibility of Reusing PEP-II Hardware for MEIC Electron Ring
Fanglei Lin, Andrew Hutton, Vasiliy S. Morozov, Yuhong Zhang
Update on MEIC Nonlinear Dynamics Work
Update on MEIC Nonlinear Dynamics Work
Update on MEIC Nonlinear Dynamics Work
The MEIC electron ring as the large ion booster
Ion Collider Ring Using Superferric Magnets
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Status and plans for crab crossing studies at JLEIC
Alternative Ion Injector Design
Update on study of chromaticity correction schemes for ion ring
Ion ring lattice with -I sextupole pairs for ir chromaticity correction Y. Nosochkov, M-H. Wang
First Look at Error Sensitivity in MEIC
Fanglei Lin, Yuri Nosochkov Vasiliy Morozov, Yuhong Zhang, Guohui Wei
Update on JLEIC Electron Ring Design
Multipole Limit Survey of FFQ and Large-beta Dipole
G. Wei, V.S. Morozov, Fanglei Lin
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov, M-H. Wang (SLAC)
Fanglei Lin MEIC R&D Meeting, JLab, July 16, 2015
Compensation of Detector Solenoids
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov (SLAC), M-H. Wang
Update on MEIC Nonlinear Dynamics Work
JLEIC Collider Rings’ Geometry Options (II)
Progress Update on the Electron Polarization Study in the JLEIC
Multipole Limit Survey of Large-beta Dipoles
Integration of Detector Solenoid into the JLEIC ion collider ring
G. Wei, V.S. Morozov, Fanglei Lin MEIC R&D Meeting, JLab, Oct 27, 2015
Status of IR / Nonlinear Dynamics Studies
Possibility of MEIC Arc Cell Using PEP-II Dipole
JLEIC Electron Ring Nonlinear Dynamics Work Plan
Upgrade on Compensation of Detector Solenoid effects
Arc FODO Cell Inventory
Update on MEIC Nonlinear Dynamics Work
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
MEIC R&D Meeting, JLab, August 20, 2014
Summary of JLEIC Electron Ring Nonlinear Dynamics Studies
Chromaticity correction in e-ring with TME cells and –I sextupole pairs in arcs Y. Nosochkov 28 February 2017.
Update on MEIC Nonlinear Dynamics Work
Update on MEIC Nonlinear Dynamics Work
DYNAMIC APERTURE OF JLEIC ELECTRON COLLIDER
Error Sensitivity in MEIC
Update on DA Studies for a TME-like Lattice
3.2 km FODO lattice for 10 Hz operation (DMC4)
Presentation transcript:

A TME-like Lattice for DA Studies Fanglei Lin, Yuri Nosochkov, Min-Huey Wang, Vasiliy Morozov, Guohui Wei, Yuhong Zhang January 17, 2017 F. Lin

Complete e-Ring Optics Ring geometry is matched. Circumference 2276.58 m = 2 x 925.17 m arcs + 2 x 213.11 m straights. Normalized emittance @ 5 GeV: 30.9 um-rad w/o SBCCBs and 29.4 um-rad w/ SBCCBs. (geometric emittances are 3.2 and 3 nm-rad, respectively) IP w/ sextupoles w/o sextupoles

Suggestions from Yuri in Last Meeting Reduce the beta functions in the two additional CCBs Considering using non-interleaved sextupole pairs in the arcs Maybe use sextupoles in additional CCBs

Suggested Plan for e- Ring DA Studies Optimize the superB-like compensation scheme for a better emittance control (done) Match the ring’s geometry (with new-magnet TME-like-arc-cell first) and check the DA Good, do the following studies (for the FODO-arc-cell ring too?) Bad, go back to the FODO-arc-cell ring and do the following studies Replace the thin lens phase/tune trombones with actual quadrupole adjustment and verify the chromatic correction performance Optimize betatron tunes by doing the tune scan Study effects of misalignment and field errors on the dynamic aperture, develop a correction scheme using BPMs and correctors included (or added/removed), specify alignment and strength error tolerances Study impact of multipole fields in regular magnets (using PEP-II specs) on the dynamic aperture Determine FFQ multipole tolerances following the same procedure as for the ion collider ring From the DA meeting on Nov. 22 2016

Back Up

TME-like Arc Cell Arc TME-like cell Dipole Quadrupoles Sextupoles Length 22.8 m (same as ion ring arc cell) arc bending radius 155.45 m (same as in the baseline) 270/90 x/y betatron phase advance Dipole Magnetic/physical length 4.0/4.28 m Bending angle 36.7 mrad (2.1), bending radius 109.1 m 0.31 T @ 10 GeV (0.37 @ 12 GeV) Sagitta 1.83 cm Quadrupoles Magnetic/physical length 0.56/0.62 and 1.0/1.06 m 20 T/m field gradients @ 10 GeV (24 T/m @ 12 GeV) 1.0 T @ 50 mm radius @ 10 GeV (1.2 T @ 12 GeV) Sextupoles Magnetic/physical length 0.25/0.31 m BPMs and Correctors Physical length 0.05 and 0.25 m

SuperB-like CCB Similar to Yuri’s dipole bending angle of qb = 5/7 qb0 = 0.714 qb0, I used qb = 4/7 qb0 = 0.571 qb0 Yuri’s Scheme-6

Arc Spin rotator + SuperB CCB + Arc cells

Updated IR Region

W Functions W functions for the ring with tunes at (66.22, 35.16), without chromaticity compensation.

W Functions W functions for the ring with tunes at (66.22, 35.16), with chromaticity compensation.

Chromatic Tunes and Beta-stars K2l: ksxsbcc1 = 1.808331247 ; K2l: ksxsbcc2 = -5.638074023 ; K2l: ksxsbcc1l = -1.839318844 ; K2l: ksxsbcc2l = 3.19542572 ; K2: ksxtarc01 = 14.71256876 ; K2: ksxtarc02 = -22.91644959 ; L = 0.25m

Schemes summary ex (nm) qb / qb0 b at CCB sext, x/y 1 @ 5 GeV Lb / Lb0 No CCB 1 2 3 4 6 ex (nm) @ 5 GeV 8.9 29.3 22.8 12.2 10.3 8.3 qb / qb0 2.286 1.429 1.286 0.714 Lb / Lb0 0.5 0.592 b at CCB sext, x/y --- 300 / 600 200 / 400 K2Lmax (m-2) CCB 0.78 1.04 3.06 3.44 3.53 K2Lmax (m-2) arcs 3.09 2.94 2.84 1.87 1.90 2.53 Natural x, x/y -113 / -120 -129 / -147 -123 / -136 -132 / -155 -132 / -156 -135 / -152 Tune, x/y 44.22 /47.16 44.22 /45.16 45.22 /47.16 46.22 /47.16 48.22 /50.16 C (m) 2185.5 2182.8 2182.4 2181.7 2327.2 Comment 60x2 arc sextupoles Thin trombones for match, 40x2 arc sextupoles Thin trombones for match, 60x2 arc sextupoles Thin trombones, for match, 60x2 arc sextupoles No trombones, longer arc, 60x2 arc sextupoles From Yuri’s JLEIC collaboration meeting fall 2016 * Ring geometry is not yet matched in these CCB schemes