Osaka Institute of Technology

Slides:



Advertisements
Similar presentations
Structure of  hypernuclei with the antisymmetrized molecular dynamics method Masahiro Isaka (RIKEN)
Advertisements

1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
反対称化分子動力学でテンソル力を取り扱う試 み -更に前進するには?- A. Dote (KEK), Y. Kanada-En ’ yo ( KEK ), H. Horiuchi (Kyoto univ.), Y. Akaishi (KEK), K. Ikeda (RIKEN) 1.Introduction.
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
Delta-hole effects on the shell evolution of neutron-rich exotic nuclei Takaharu Otsuka University of Tokyo / RIKEN / MSU Chiral07 Osaka November 12 -
8 He における ダイニュートロン形成と崩 れ 2013/7/27 RCNP 研究会「核子・ハイペロン多体系におけるクラスター現象」 1 Department of Physics, Kyoto University Fumiharu Kobayashi Yoshiko Kanada-En’yo arXiv:
Dineutron formation and breaking in 8 He th Sep. The 22nd European Conference on Few-Body Problems in Physics 1 Department of Physics, Kyoto University.
KEK SRC Workshop Sept 25, 2009 KEK Theory Center Workshop on Short-range Correlations and Tensor Structure at J-PARC September 25, 2009 Search for Direct.
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.
Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University.
Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)
11 Role of tensor force in light nuclei based on the tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Manuel Valverde RCNP, Osaka Univ. Atsushi.
Role of tensor force in He and Li isotopes with tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN Atsushi UMEYA RIKEN Takayuki.
1 軽い核におけるテンソル相関と 短距離相関の役割 核子と中間子の多体問題の統一的描像に向けて@ RCNP Tensor correlation for He and Li isotopes in Tensor-Optimized Shell Model (TOSM)
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
クラスター・シェル競合の新展開 板垣 直之 ( 京都大学基礎物理学研究所 ). Shell structure; single-particle motion of protons and neutrons decay threshold to clusters Excitation energy.
Takuma Matsumoto (Kyushu Univ.) K. Minomo, K. Ogata a, M. Yahiro, and K. Kato b (Kyushu Univ, a RCNP, b Hokkaido Univ) Description for Breakup Reactions.
Cluster-shell Competition in Light Nuclei N. Itagaki, University of Tokyo S. Aoyama, Kitami Institute of Technology K. Ikeda, RIKEN S. Okabe, Hokkaido.
Study of light kaonic nuclei with a Chiral SU(3)-based KN potential A. Dote (KEK) W. Weise (TU Munich)  Introduction  ppK - studied with a simple model.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
We construct a relativistic framework which takes into pionic correlations(2p-2h) account seriously from both interests: 1. The role of pions on nuclei.
Hiroshi MASUI Kitami Institute of Technology RCNP 研究会 「 核子・ハイペロン多体系におけるクラスター現象 」, KGU 関内, Sep. 2013, 横浜 Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN.
Hiroshi MASUI Kitami Institute of Technology Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN Aug. 2011, APFB2011, Sungkyunkwan Univ., Seoul, Korea.
Application of correlated basis to a description of continuum states 19 th International IUPAP Conference on Few- Body Problems in Physics University of.
Cluster aspect of light unstable nuclei
Studies of hypernuclei with the AMD method Masahiro ISAKA Institute of Physical and Chemical Research (RIKEN) Focusing on 25  Mg, based on M. Isaka, M.
Extended Brueckner-Hartree-Fock theory in many body system - Importance of pion in nuclei - Hiroshi Toki (RCNP, KEK) In collaboration.
Coulomb Breakup and Pairing Excitation of Two-Neutron Halo Nucleus 11 Li Niigata University S. Aoyama RCNPT. Myo Hokkaido UniveristyK. Kato RikenK. Ikeda.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Strong tensor correlation in light nuclei with tensor-optimized antisymmetrized molecular dynamics (TOAMD) International symposium on “High-resolution.
Faddeev Calculation for Neutron-Rich Nuclei Eizo Uzu (Tokyo Univ. of Science) Collaborators Masahiro Yamaguchi (RCNP) Hiroyuki Kamada (Kyusyu Inst. Tech.)
11 明 孝之 大阪工業大学 阪大 RCNP Tensor optimized shell model using bare interaction for light nuclei 共同研究者 土岐 博 阪大 RCNP 池田 清美 理研 RCNP
Tensor Optimized Few-body Model for s-shell nuclei Kaori Horii, Hiroshi Toki (RCNP, Osaka univ.) Takayuki Myo, (Osaka Institute of Technology) Kiyomi Ikeda.
Variational Multiparticle-Multihole Configuration Mixing Method with the D1S Gogny force INPC2007, Tokyo, 06/06/2007 Nathalie Pillet (CEA Bruyères-le-Châtel,
Cluster-Orbital Shell Model for neutron-lich nuclei Hiroshi MASUI Kitami Institute of Technology Collaborators: Kiyoshi KATO, Hokkaido Univ. Kiyomi IKEDA,
11 Tensor optimized shell model with bare interaction for light nuclei In collaboration with Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN 19th International.
Satoru Sugimoto Kyoto University 1. Introduction 2. Charge- and parity-projected Hartree-Fock method (a mean field type model) and its application to sub-closed.
Few-body approach for structure of light kaonic nuclei Shota Ohnishi (Hokkaido Univ.) In collaboration with Tsubasa Hoshino (Hokkaido Univ.) Wataru Horiuchi.
Systematic analysis on cluster components in He-isotopes by using a new AMD approach Niigata University Shigeyoshi Aoyama FB18, August 24 (2006) S. Aoyama,
Search for direct evidence of tensor interaction in nuclei = high momentum component in nuclei = TERASHIMA Satoru 寺嶋 知 Depart. of Nuclear Science and Technology,
理論から見たテンソル力 Hiroshi Toki (RCNP, Osaka University) In collaboration with T. Myo (Osaka IT) Y. Ogawa (RCNP) K. Horii (RCNP) K. Ikeda.
Tensor interaction in Extended Brueckner-Hartree-Fock theory Hiroshi Toki (RCNP, Osaka) In collaboration with Yoko Ogawa.
Electric Dipole Response, Neutron Skin, and Symmetry Energy
Pairing Correlation in neutron-rich nuclei
May the Strong Force be with you
Description of nuclear structures in light nuclei with Brueckner-AMD
The role of isospin symmetry in medium-mass N ~ Z nuclei
Masahiro Isaka (RIKEN)
Kaon Absorption from Kaonic Atoms and
Nuclear structure calculations with realistic nuclear forces
Nuclear structure far from stability
Tensor optimized shell model and role of pion in finite nuclei
Structure and dynamics from the time-dependent Hartree-Fock model
Structure of few-body light Λ hypernuclei
JLab6: Cluster structure connects to high-momentum components and internal quark modification of nuclei Short-Range Correlations (SRCs) dominated by np.
Yokohama National University Takenori Furumoto
Hiroshi MASUI Kitami Institute of Technology
Role of Pions in Nuclei and Experimental Characteristics
Relativistic Chiral Mean Field Model for Finite Nuclei
Relativistic mean field theory and chiral symmetry for finite nuclei
Relativistic extended chiral mean field model for finite nuclei
軽い不安定核における 共鳴状態の構造 明 孝之 大阪工業大学 1 KEK 理論セミナー  
Impurity effects in p-sd shell and neutron-rich L hypernuclei
Kernfysica: quarks, nucleonen en kernen
Nuclear excitations in relativistic nuclear models
Pions in nuclei and tensor force
Few-body approach for structure of light kaonic nuclei
Role of tensor force in light nuclei with tensor optimized shell model
Ab-initio nuclear structure calculations with MBPT and BHF
Department of Physics, Sichuan University
Presentation transcript:

Osaka Institute of Technology Role of tensor force in light unstable nuclei with tensor-optimized shell model Takayuki MYO  明 孝之 Osaka Institute of Technology 大阪工業大学 In collaboration with Atsushi UMEYA (Nippon Inst. Tech.) Hiroshi TOKI (RCNP) Kiyomi IKEDA (RIKEN) RIBF ULIC-Symposium "Perspective in Isospin Physics" - Role of non-central interactions in structure and dynamics of unstable nuclei - @ RIKEN, 2012.8 1

Outline Role of Vtensor in the nuclear structure by describing strong tensor correlation explicitly. Tensor Optimized Shell Model (TOSM) to describe tensor correlation. Unitary Correlation Operator Method (UCOM) to describe short-range correlation. TOSM+UCOM to He & Li isotopes with Vbare TM, A. Umeya, H. Toki, K. Ikeda PRC84 (2011) 034315 TM, A. Umeya, H. Toki, K. Ikeda PRC, in press

Deuteron properties & tensor force Energy -2.24 MeV Kinetic 19.88 Central -4.46 Tensor -16.64 LS -1.02 P(L=2) 5.77% Radius 1.96 fm S D AV8’ Vcentral Rm(s)=2.00 fm Rm(d)=1.22 fm r d-wave is “spatially compact” (high momentum) Vtensor

Tensor-optimized shell model (TOSM) TM, Sugimoto, Kato, Toki, Ikeda PTP117(2007)257 Configuration mixing within 2p2h excitations with high-L orbits.   TM et al., PTP113(2005) TM et al., PTP117(2007) Length parameters such as b0s, b0p , … are optimized independently, or superposed by many Gaussian bases. Spatial shrinkage of D-wave as seen in deuteron HF by Sugimoto et al,(NPA740) / Akaishi (NPA738) RMF by Ogawa et al.(PRC73), AMD by Dote et al.(PTP115) Satisfy few-body results with Minnesota central force (4,6He) 4He 4 4

Hamiltonian and variational equations in TOSM (0p0h+1p1h+2p2h) Particle state : Gaussian expansion for each orbit Gaussian basis function Hiyama, Kino, Kamimura PPNP51(2003)223 c.m. excitation is excluded by Lawson’s method TOSM code : p-shell region

Configurations in TOSM Gaussian expansion particle states C0 C1 C2 C3 nlj proton neutron hole states (harmonic oscillator basis) Application to Hypernuclei by A. Umeya to investigate N-N coupling

Unitary Correlation Operator Method (short-range part) TOSM short-range correlator Bare Hamiltonian Shift operator depending on the relative distance Amount of shift, variationally determined. 2-body cluster expansion 7 7 H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61

Short-range correlator : C (or Cr) [fm] Shift function Transformed VNN (AV8’) 1E s(r) Originalr2 3GeV repulsion 3E Vc 1O C 3O We further introduce partial-wave dependence in “s(r)” of UCOM S-wave UCOM 8

4He in TOSM + short-range UCOM (exact) Kamada et al. PRC64 (Jacobi) TM, H. Toki, K. Ikeda PTP121(2009)511 variational calculation VLS E Gaussian expansion with 9 Gaussians VC VT good convergence 9

Tensor Optimized Few-body Model (TOFM) Same as TOSM concept No use of UCOM Correlated Gaussian basis + Global vector in SVM K 102.35 95.37 4He with AV8’ S-wave (L=0) D-wave (L=2) Y2 -4.05 -4.71 LS -24.05 -25.92 E VC -54.58 -55.22 VT -60.79 -68.32 Y2 Y2 TOFM SVM Horii, Toki, Myo, Ikeda PTP127(2012)1019 10

5-8He with TOSM+UCOM Excitation energies in MeV Bound state app. TM, A. Umeya, H. Toki, K. Ikeda PRC84 (2011) 034315 Excitation energies in MeV Bound state app. No continuum No VNNN Excitation energy spectra are reproduced well

5-9Li with TOSM+UCOM Excitation energies in MeV TM, A. Umeya, H. Toki, K. Ikeda PRC, in press Excitation energies in MeV Excitation energy spectra are reproduced well

5-9Li with TOSM Minnesota force (Central+LS) Excitation energies in MeV Too large excitation energy

Matter radius of He & Li isotopes Expt TOSM with AV8’ Halo Skin A. Dobrovolsky, NPA 766(2006)1 I. Tanihata et al., PLB289(‘92)261 G. D. Alkhazov et al., PRL78(‘97)2313 O. A. Kiselev et al., EPJA 25, Suppl. 1(‘05)215. P. Mueller et al., PRL99(2007)252501 14 14

Configurations of 4He with AV8’ TM, H. Toki, K. Ikeda PTP121(2009)511 (0s1/2)4 83.0 % (0s1/2)−2JT(p1/2)2JT JT=10 2.6 JT=01 0.1 (0s1/2)−210(1s1/2)(d3/2)10 2.3 (0s1/2)−210(p3/2)(f5/2)10 1.9 Radius [fm] 1.54 deuteron correlation with (J,T)=(1,0) Cf. R.Schiavilla et al. (VMC) PRL98(2007)132501 R. Subedi et al. (JLab) Science320(2008)1476 12C(e,e’pN) S.C.Simpson, J.A.Tostevin PRC83(2011)014605 4He contains p1/2 of “pn-pair” 12C 10B+pn – Same feature in 5He-8He ground state 15

Selectivity of the tensor coupling in 4He VT L=2 s1 s2 s3 s4 s1 s2 s3 s4 1+(pn) 1+(pn) VT Selectivity of tensor operator s1 s2 s3 s4 L=2 DL=2, DS=2 16

Relativistic chiral mean field model Ogawa, Toki (RCNP) 2011,NPA 16O a Vp / A • with 2p2h excitations. • Difference between  12C and 16O is “3 MeV / A” 12C • It comes from low pion-spin states (J=0,1,2) which suffers Pauli blocking. 16O 16O P1/2 12C a P3/2 4He Vp(Jp)/ A 12C S1/2

4-8He with TOSM+UCOM Excitation energies in MeV No VNNN No continuum Excitation energy spectra are reproduced well

Tensor correlation in 6He val.-n Ground state Excited state halo state (0+) Tensor correlation is suppressed due to Pauli-Blocking TM, K. Kato, K. Ikeda, J. Phys. G31 (2005) S1681 19 19

6He : Hamiltonian component in TOSM Difference from 4He in MeV bhole=1.5 fm 6He 0+1 0+2 n2 config (p3/2)2 (p1/2)2 DKin. 53.0 34.3 DCentral 27.8 14.1 DTensor 12.0 0.2 DLS 4.0 2.1 =18.4 MeV (hole) LS splitting energy in 6He same trend in 5-8He Terasawa, Arima PTP23 (’60) Nagata, Sasakawa, Sawada, Tamagaki, PTP22(’59) Myo, Kato, Ikeda, PTP113 (’05)

Configurations of “pn in 6Ligs” and VNN AV8’ Minnesota (0p1/2)(0p3/2) 43% 29% (0p3/2)2 38% 56% LS jj S=0 S=1 (0p1/2)(0p3/2) 11% 89% (0p3/2)2 56% 44% Enhancement of S=1 component with AV8’ (Vtensor) Indication of the a+d clustering 21 (1+)

Ground states : p-shell configurations Weight 6Li (1+) (0p1/2)(0p3/2) 43% 7Li (3/2-) (0p3/2)3 48% 8Li (2+) (0p3/2)4 41% 9Li (3/2-) (0p3/2)5 46% LS jj jj jj Tensor-type excitations 6Li … LS coupling 7-9Li … jj coupling 0s → 0p1/2, 0p3/2 → sd & higher shells 22

Summary TOSM+UCOM using Vbare. Reproduce the excitation energy spectra. 4He contains “pn-pair of p1/2” than p3/2. He isotopes with p3/2 has large contributions of Vtensor & Kinetic energy. 6Li : S=1 component, LS coupling. 7-9Li : jj coupling. Foundation to the analyses of 10Li & 11Li. 23 23

4He in UCOM (Afnan-Tang, Vcentral only) 24 24

4-8He with TOSM Minnesota force (Central+LS) Difference from 4He in MeV No VNNN No continuum

Configurations of “nn in 6Hegs” and VNN AV8’ Minnesota (0p3/2)2 72% 81% (0p1/2)2 10% 4% jj S=0 S=1 (0p3/2)2 33% 66% (0p1/2)2 26