Volume 15, Issue 10, Pages (October 2008)

Slides:



Advertisements
Similar presentations
Nucleosomes and Cisplatin
Advertisements

One-Pot Synthesis of Azoline-Containing Peptides in a Cell-free Translation System Integrated with a Posttranslational Cyclodehydratase  Yuki Goto, Yumi.
Tailor-Made Peptide Synthetases
Nucleosomes and Cisplatin
Volume 21, Issue 2, Pages (February 2014)
Travis S. Young, Pieter C. Dorrestein, Christopher T. Walsh 
Foundations for Directed Alkaloid Biosynthesis
Ribosome Evolution for Two Artificial Amino Acids in E. coli
Volume 11, Issue 10, Pages (October 2004)
Glen S. Cho, Jack W. Szostak  Chemistry & Biology 
Adding Specificity to Artificial Transcription Activators
Marcel Zimmermann, Julian D. Hegemann, Xiulan Xie, Mohamed A. Marahiel 
Volume 20, Issue 6, Pages (June 2013)
An FAD-Dependent Pyridine Nucleotide-Disulfide Oxidoreductase Is Involved in Disulfide Bond Formation in FK228 Anticancer Depsipeptide  Cheng Wang, Shane.
Volume 19, Issue 5, Pages (May 2012)
Messenger RNA-Programmed Incorporation of Multiple N-Methyl-Amino Acids into Linear and Cyclic Peptides  Takashi Kawakami, Hiroshi Murakami, Hiroaki Suga 
Volume 19, Issue 11, Pages (November 2012)
Volume 17, Issue 10, Pages (October 2010)
Volume 21, Issue 8, Pages (August 2014)
A Revised Pathway Proposed for Staphylococcus aureus Wall Teichoic Acid Biosynthesis Based on In Vitro Reconstitution of the Intracellular Steps  Stephanie.
Volume 18, Issue 11, Pages (November 2011)
Matthew Levy, Andrew D. Ellington  Chemistry & Biology 
Jacob E. Corn, James M. Berger  Structure 
Redesign of a Dioxygenase in Morphine Biosynthesis
Conversion of Red Fluorescent Protein into a Bright Blue Probe
No Need To Be Pure: Mix the Cultures!
Elucidation of the Biosynthetic Gene Cluster and the Post-PKS Modification Mechanism for Fostriecin in Streptomyces pulveraceus  Rixiang Kong, Xuejiao.
Volume 15, Issue 1, Pages (January 2007)
Insights into the Generation of Structural Diversity in a tRNA-Dependent Pathway for Highly Modified Bioactive Cyclic Dipeptides  Tobias W. Giessen, Alexander M.
Potent and Selective Peptidyl Boronic Acid Inhibitors of the Serine Protease Prostate- Specific Antigen  Aaron M. LeBeau, Pratap Singh, John T. Isaacs,
Volume 21, Issue 6, Pages (June 2014)
Volume 12, Issue 12, Pages (December 2005)
PqsE of Pseudomonas aeruginosa Acts as Pathway-Specific Thioesterase in the Biosynthesis of Alkylquinolone Signaling Molecules  Steffen Lorenz Drees,
A Subdomain Swap Strategy for Reengineering Nonribosomal Peptides
Ribosome Evolution for Two Artificial Amino Acids in E. coli
Volume 21, Issue 5, Pages (May 2014)
Terence S. Crofts, Erica C. Seth, Amrita B. Hazra, Michiko E. Taga 
Volume 16, Issue 5, Pages (May 2009)
Semisynthetic Src SH2 Domains Demonstrate Altered Phosphopeptide Specificity Induced by Incorporation of Unnatural Lysine Derivatives  Satpal Virdee,
Volume 15, Issue 1, Pages 5-11 (January 2008)
An Artificial Pathway to 3,4-Dihydroxybenzoic Acid Allows Generation of New Aminocoumarin Antibiotic Recognized by Catechol Transporters of E. coli  Silke.
Foundations for Directed Alkaloid Biosynthesis
Volume 21, Issue 1, Pages (January 2014)
In Vivo Characterization of Nonribosomal Peptide Synthetases NocA and NocB in the Biosynthesis of Nocardicin A  Jeanne M. Davidsen, Craig A. Townsend 
Volume 18, Issue 1, Pages (January 2011)
Volume 16, Issue 6, Pages (June 2009)
Volume 17, Issue 4, Pages (April 2010)
Volume 15, Issue 6, Pages (June 2008)
Volume 16, Issue 4, Pages (April 2009)
Elegant Metabolite Biosynthesis
Volume 16, Issue 5, Pages (May 2009)
Methods for the Elucidation of Protein-Small Molecule Interactions
Vanessa V. Phelan, Yu Du, John A. McLean, Brian O. Bachmann 
L-DOPA Ropes in tRNAPhe
New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post- translationally Modified Peptide Natural Products  Manuel A. Ortega, Wilfred A.
Ethan B. Butler, Yong Xiong, Jimin Wang, Scott A. Strobel 
Volume 18, Issue 1, Pages (January 2011)
Volume 21, Issue 9, Pages (September 2014)
Volume 18, Issue 1, Pages (January 2011)
Volume 21, Issue 7, Pages (July 2014)
Volume 18, Issue 8, Pages (August 2011)
Molecular Similarity Analysis Uncovers Heterogeneous Structure-Activity Relationships and Variable Activity Landscapes  Lisa Peltason, Jürgen Bajorath 
Volume 20, Issue 10, Pages (October 2013)
Tools to Tackle Protein Acetylation
Structural Basis of Proline-Proline Peptide Bond Specificity of the Metalloprotease Zmp1 Implicated in Motility of Clostridium difficile  Magdalena Schacherl,
Volume 22, Issue 11, Pages (November 2015)
Volume 16, Issue 6, Pages (June 2009)
Volume 21, Issue 9, Pages (September 2014)
A New Fluorescence-Based Assay for Autophagy
Bacterial and Eukaryotic Phenylalanyl-tRNA Synthetases Catalyze Misaminoacylation of tRNAPhe with 3,4-Dihydroxy-L-Phenylalanine  Nina Moor, Liron Klipcan,
Presentation transcript:

Volume 15, Issue 10, Pages 1035-1045 (October 2008) Structure-Activity Relationship Studies of the Two-Component Lantibiotic Haloduracin  Lisa E. Cooper, Amanda L. McClerren, Anita Chary, Wilfred A. van der Donk  Chemistry & Biology  Volume 15, Issue 10, Pages 1035-1045 (October 2008) DOI: 10.1016/j.chembiol.2008.07.020 Copyright © 2008 Elsevier Ltd Terms and Conditions

Figure 1 General Overview of the Common Steps in Lantibiotic Biosynthesis LanA, lantibiotic precursor peptide. Chemistry & Biology 2008 15, 1035-1045DOI: (10.1016/j.chembiol.2008.07.020) Copyright © 2008 Elsevier Ltd Terms and Conditions

Figure 2 Biosynthesis of Halα and Halβ (A and B) In substrates designated HalA1-Xa or HalA2-Xa, the four amino acids at positions −1 to −4 were replaced by IEGR (boxed in blue). In (B), the revised structure of Halβ is shown based on the results in this study. Chemistry & Biology 2008 15, 1035-1045DOI: (10.1016/j.chembiol.2008.07.020) Copyright © 2008 Elsevier Ltd Terms and Conditions

Figure 3 MALDI-TOF MS of HalA2-Xa S22A HalA2-Xa S22A before (dashed line) and after (solid line) incubation with HalM2. The asterisks (∗) indicate a phosphorylated peptide (Chatterjee et al., 2005a). Chemistry & Biology 2008 15, 1035-1045DOI: (10.1016/j.chembiol.2008.07.020) Copyright © 2008 Elsevier Ltd Terms and Conditions

Figure 4 Antimicrobial Activity Assays for Haloduracin Mutants against the Indicator Strain L. lactis CNRZ 117 In vitro refers to compound produced with purified HalM enzymes and subsequent proteolysis with Factor Xa. In vivo refers to Halα or Halβ isolated and purified from B. halodurans C-125. Region 1, Halα + Halβ (both in vivo); region 2, Halα (in vitro) and Halβ (in vivo); region 3, Halα C8A (in vitro) + Halβ (in vivo); region 4, Halα C17A (in vitro) + Halβ (in vivo); region 5, Halα C23A (in vitro) + Halβ (in vivo); region 6, Halα C27A (in vitro) + Halβ (in vivo); region 7, Halα (in vivo) + Halβ (in vitro); region 8, Halα (in vivo) + Halβ C5A (in vitro); region 9, Halα (in vivo) + Halβ C15A (in vitro); region 10, Halα (in vivo) + Halβ C20A (in vitro); region 11, Halα (in vivo) + Halβ C24A (in vitro); region 12, Halα E22A (in vitro) + Halβ (in vivo); region 13, Halα E22Q (in vitro) + Halβ (in vivo); region 14, Halα S26A (in vitro) + Halβ (in vivo); region 15, Halα (in vivo) + Halβ Dhb18Ala (in vitro); region 16, Halα (in vivo) + Halβ S22A (in vitro). Chemistry & Biology 2008 15, 1035-1045DOI: (10.1016/j.chembiol.2008.07.020) Copyright © 2008 Elsevier Ltd Terms and Conditions

Figure 5 Representative MALDI-TOF MS Data of the HalA1-Xa or HalA2-Xa Cys-to-Ala Mutants Treated with HalM1 or HalM2 The asterisks (∗) indicate phosphorylated products (Chatterjee et al., 2005a). (A) HalA1-Xa C8A before (dashed line) and after incubation with HalM1 (solid line). (B) HalA1-Xa C8A treated with TCEP/IAA before (dashed line) and after HalM1 (solid line). (C) HalA2-Xa C5A before (dashed line) and after incubation with HalM2 (solid line). (D) HalA2-Xa C5A treated with TCEP/PHMB before (dashed line) and after HalM2 treatment (solid line). Chemistry & Biology 2008 15, 1035-1045DOI: (10.1016/j.chembiol.2008.07.020) Copyright © 2008 Elsevier Ltd Terms and Conditions

Figure 6 Importance of Glu22 for Bioactivity (A) Structures of Halα, lacticin 3147 A1, mersacidin, and actagardine. Residues colored green represent the proposed lipid II binding motif (CTLTXEC); the Glu residue is blue. (B) HalA1-Xa E22Q before (dashed line) and after incubation with HalM1 (solid line). The asterisks (∗) indicate phosphorylated peptides (Chatterjee et al., 2005a). (C) HalA1-Xa E22Q treated with TCEP/IAA before (dashed line) and after HalM1 (solid line). Chemistry & Biology 2008 15, 1035-1045DOI: (10.1016/j.chembiol.2008.07.020) Copyright © 2008 Elsevier Ltd Terms and Conditions

Figure 7 Proteolytic Processing of Haloduracin (A) HalA2-XaGS Q23A treated with HalM2 and Factor Xa resulted in GDVHAQ-Halβ Q23A. This peptide was used to monitor proteolytic processing. GDVHAQ-Halβ treated with supernatant of L. lactis CNRZ 117 (dashed line) or B. halodurans C-125 (solid line). GDVHAQ-Halβ Q23A calculated (calcd) 2883 Da; observed (obsd) 2886 Da. A TCEP adduct was observed at 3136 Da (Δm = 250 Da, calcd 3133 Da) and is labeled with a double asterisk (∗∗). Halβ Q23A calcd 2276 Da; obsd 2281 Da. A TCEP adduct was observed at 2532 Da (Δm = 250 Da, calcd 2526 Da) and is labeled with a double asterisk (∗∗). (B) HalA2-XaGS Q23A treated with HalM2 and then supernatant of L. lactis CNRZ 117 (dashed line), calcd 9290 Da (M + H − 7 H2O); obsd 9290 Da. HalA2-XaGS Q23A treated with HalM2 and then supernatant of B. halodurans C-125 (solid line), calcd 2276 Da (Halβ Q23A); obsd 2279 Da. (C) Halα isolated from B. halodurans C-125 was treated with TCEP/IAA. The resulting bisalkylated peptide was then incubated with supernatant of L. lactis CNRZ 117 (dashed line) or B. halodurans C-125 (solid line). Halα + 2 IAA calcd 3163 Da; obsd 3165 Da. Halα(Δ1–3) + IAA calcd 2745 Da; obsd 2748. Halα(Δ1–5) + IAA calcd 2468 Da; obsd 2469. Chemistry & Biology 2008 15, 1035-1045DOI: (10.1016/j.chembiol.2008.07.020) Copyright © 2008 Elsevier Ltd Terms and Conditions