Few-body quantum dynamics in strong fields:

Slides:



Advertisements
Similar presentations
Interplay Between Electronic and Nuclear Motion in the Photodouble Ionization of H 2 T J Reddish, J Colgan, P Bolognesi, L Avaldi, M Gisselbrecht, M Lavollée,
Advertisements

Ion Beam Analysis techniques:
High Intensity Laser Electron Scattering David D. Meyerhofer IEEE Journal of Quantum Electronics, Vol. 33, No. 11, November 1997.
LCLS Atomic Physics with Intense X-rays at LCLS Philip H. Bucksbaum, University of Michigan, Ann Arbor, MI Roger Falcone, University of California, Berkeley,
J.P. Brichta, S. Walker, X. Sun, J.H. Sanderson Department of Physics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada Laser induced coincidence.
Imaginary time method and nonlinear ionization by powerful free electron lasers S.V. Popruzhenko Moscow Engineering Physics Institute, Moscow EMMI workshop.
Intense Field Femtosecond Laser Interactions AMP TalkJune 2004 Ultrafast Laser Interactions with atoms, molecules, and ions Jarlath McKenna Supervisor:
Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied.
Generation of short pulses
Excitation processes during strong- field ionization and dissociatation of molecules Grad students: Li Fang, Brad Moser Funding : NSF-AMO November 29,
Time-resolved analysis of large amplitude collective motion in metal clusters Metal clusters : close « cousins » of nuclei Time resolved : « Pump Probe.
Narrow transitions induced by broad band pulses  |g> |f> Loss of spectral resolution.
Physics 452 Quantum mechanics II Winter 2011 Karine Chesnel.
Recollision, Time Delay, and Double Ionization studied with 3-D Classical Ensembles S.L. Haan, A. Karim, and Z. SmithJ.H. Eberly Calvin CollegeUniversity.
Strong-Field Imaging of Molecular Dynamics Wendell T. Hill, III University of Maryland Department of Physics and Institute for Physical Science and Technology.
Laser-induced vibrational motion through impulsive ionization Grad students: Li Fang, Brad Moser Funding : NSF-AMO October 19, 2007 University of New Mexico.
Strong-field physics in the x-ray regime Louis DiMauro ITAMP FEL workshop June 21, 2006 fundamental studies of intense laser-atom interactions generation.
Photoelectron Spectroscopy Lecture 7 – instrumental details –Photon sources –Experimental resolution and sensitivity –Electron kinetic energy and resolution.
TOF Mass Spectrometer &
Proton polarization measurements in π° photo-production --On behalf of the Jefferson Lab Hall C GEp-III and GEp-2γ collaboration Wei Luo Lanzhou University.
Extreme Light Infrastructure Workshop – Bucharest - September, 17, 2008 Cosmin Blaga The Dawn of Attophysics - First Steps Towards A Tabletop Attosecond.
Ions in Intense Femtosecond Laser Fields Jarlath McKenna MSci Project10th December 2001 Supervisor: Prof. Ian Williams.
High Harmonic Generation in Gases Muhammed Sayrac Texas A&M University.
CLEO2004 K. L. Ishikawa No. 0 Enhancement in photoemission from He + by simultaneous irradiation of laser and soft x-ray pulses Kenichi L. Ishikawa Department.
Christina Dimopoulou Max-Planck-Institut für Kernphysik, Heidelberg IPHE, Université de Lausanne, Exploring atomic fragmentation with COLTRIMS.
Interaction of laser pulses with atoms and molecules and spectroscopic applications.
Ionization Detectors Basic operation
Femtosecond Laser Spectroscopy of C 60 Nieuwegein, The Netherlands August 21, 2001 Eleanor Campbell, Göteborg University & Chalmers, Sweden R.D. Levine,
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Studies of Transient Neutral Molecules by Dissociative Photodetachment of Cooled Molecular Anions Christopher Johnson Continetti Research Lab University.
Dynamics of irradiated clusters and molecules Solvated molecules Deposited clusters Free clusters Electron Emission Laser Projectile Irradiation of solvated.
1 Pengqian Wang Department of Physics Western Illinois University March 4, 2013.
typical kHz experiment
Ultrafast Laser Interactions with Atoms, Ions and Molecules
Results using molecular targets Linear-circular comparison of the intense field ionization of simple molecular targets (N 2, CO 2 ): evidence of nonsequential.
Results using atomic targets Suppression of Nonsequential ionization from an atomic ion target (comparison of double ionization of Ar and Ar + ). Determination.
PHYSICAL CONSEQUENCE:  electron capture results in odd harmonic photons. harmonic cutoff: (3U p + IP) rule !!  elastic scattering yields energetic (10U.
Precision spectroscopy of HCI in a reaction microscope Max-Planck-Institut für Kernphysik, Heidelberg C. Dimopoulou HITRAP Meeting, May 2005, Munich.
Key experiment planned at HITRAP Precision spectroscopy of singly and doubly-excited states of slow HCI Max- Planck-Institut für Kernphysik, Heidelberg.
Non Double-Layer Regime: a new laser driven ion acceleration mechanism toward TeV 1.
Intramolecular Energy Redistribution in C 60 M. Boyle, Max Born Institute.
© Imperial College LondonPage 1 Probing nuclear dynamics in molecules on an attosecond timescale 7 th December 2005 J. Robinson, S. Gundry, C. A. Haworth,
Ionization in atomic and solid state physics. Paul Corkum Joint Attosecond Science Lab University of Ottawa and National Research Council of Canada Tunneling.
Rydberg atoms part 1 Tobias Thiele.
Microwave Spectroscopy of the Autoionizing 5d 3/2 n l States of Barium Edward Shuman Tom Gallagher.
GRK-1203 Workshop Oelde Watching a laser pulse at work
N. Kabachnik Institute of Nuclear Physics, Moscow State University
X-Ray Emission Spectroscopy and Resonant Inelastic Soft X-ray Scattering Photons in and Photons out For Synchrotron Radiation 21/
Molecular Spectroscopy
Dissociation of Molecular Ions Studied by
Small fermionic systems : the common methods and challenges
Elettra Sincrotrone Trieste
Experiments at LCLS wavelength: 0.62 nm (2 keV)
Interaction of Intense Ultrashort Laser Fields with Xe, Xe+ and Xe++
sub-femtosecond correlated dynamics probed with antiprotons
1. Ionization of molecules - ( MO-ADK theory)
Fragmentation Dynamics of H2+ / D2+ Kansas State University
Wavelength-dependence of Momentum-Space Images
Bi-plasma interactions on femtosecond time-scales
Xiao Min Tong and Chii Dong Lin
State evolution in cold helium Rydberg gas
Photoelectron diffraction from small molecules:
2D Momentum Spectra of the ATI Electrons by 10 fs Laser Pulses
P. Ranitiovic, I. Litvinuyk, and C.L. Cocke
Watching the Time Evolution of Wave-Packets in Diatomic Molecules
I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray
High Harmonic Analysis Using a COLTRIMS Technique
AMO Early Science Capability
Recent Physics and Future Developments
DAMOP 2008 Interplay between electronic and nuclear motion in the photodouble ionization of H2 T J Reddish, J Colgan, P Bolognesi, L Avaldi, M Gisselbrecht,
Presentation transcript:

Few-body quantum dynamics in strong fields: From "simple" single ionisation to exploding molecular clocks Max-Planck-Institut für Kernphysik Bernold Feuerstein, Artem Rudenko, Karl Zrost, Vitor L. B. de Jesus, Claus Dieter Schröter, Robert Moshammer and Joachim Ullrich Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg

Outline Experimental set-up Single ionisation of atoms Multiple ionisation of atoms Molecular fragmentation

Ultrashort pulses: 6-7 fs Experiment: „Reaction Microscope“ MCP Ions E, Z (ToF) Y (jet direction) X (laser beam propagation)  Helmholtz coils B Laser Spherical mirror Supersonic gas jet Background pressure 2x10-11 mbar Target density 108-109 cm-1 Extraction voltage 1 V/cm; Ion-electron coincidence Spectrometer: MCP electrons Photon energy 1.55 eV (l = 800 nm), pulse length 23 fs, Intensity I  1014-1016 W/cm2, repetition rate 3 kHz Laser (Ti: Sapphire): Momentum resolution: ΔP|| < 0.02 a.u. Ultrashort pulses: 6-7 fs

Reaction Microscope

Single ionisation of atoms

 > 1: Multiphoton (Above Threshhold) Ionisation Single ionisation of atoms Ip - ionisation potential Up = I/42 - ponderomotive potential Keldysh parameter  > 1: Multiphoton (Above Threshhold) Ionisation Ek Ek ħ Ionisation rate: Ek = N ħ  - Ip* Electron energy: Nonresonant Ip* Due to AC Stark shift Ip*  Ip + Up Resonant

Single ionisation of atoms Ip - ionisation potential Up = I/42 - ponderomotive potential Keldysh parameter  < 1: Tunnel ionisation Transverse momentum distribution Minimum at ultra–low energies: counts P, a.u. -1,0 -0,5 0,0 0,5 1,0 1000 2000 3000 4000 5000 -3 -2 -1 1 2 3 2000 4000 6000 8000 counts Pion||, [a.u]  = 0.42 Ne,1015 W/cm2 Coulomb interaction with the parent ion? K. Dimitriou et al, TU Vienna 2-step process: 1) Tunneling through the lowered barrier 2) Classical oscillating motion in the laser field

P||, [a.u] Ion momentum distribution: He, 23fs : 0.31 – 0.58 counts -3 -2 -1 1 2 3 5000 10000 15000 20000 P||, [a.u] counts 0.6 PW/cm2 2.1 PW/cm2 : 0.31 – 0.58 1.5 PW/cm2 1.0 PW/cm2

P||, [a.u] Ion momentum distribution: Ne, 23fs : 0.3 – 0.67 counts -3 -2 -1 1 2 3 1000 3000 5000 7000 counts 0.6 PW/cm2 0.4 PW/cm2 1.5 PW/cm2 2.0 PW/cm2 1.0 PW/cm2 : 0.3 – 0.67

P||, [a.u] Ion momentum distribution: Ar, 23fs : 0.29 – 1.1 counts -2 -1 1 2 2000 4000 6000 8000 P||, [a.u] counts 0.25 PW/cm2 0.12 PW/cm2 0.8 PW/cm2 1.5 PW/cm2 0.5 PW/cm2 : 0.29 – 1.1

Electron energy spectra: Ne, 23 fs Electron energy [eV] 0.6 PW/cm2 0.4 PW/cm2 1.5 PW/cm2 1.0 PW/cm2 2 4 6 8 10 12 14 16 18 20 2000 4000 6000 counts No ponderomotive shifts observed!

Two-dimensional electron momentum distributions He 0.6 PW/cm2  0.6 0.2 0.4  = 0.58 Z (ToF) Y (jet direction) X (laser beam propagation)  P|| = Pz - momentum along laser polarisation P = (Px2 + Py2)1/2 Area where the spectrometer has no resolution in the transverse direction Ne 0.4 PW/cm2 0.6 0.2 0.4  = 0.67 P [a.u.] P [a.u.] -1.0 -0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0 Ar 0.25 PW/cm2 0.6 0.2 0.4  = 0.73

Two-dimensional electron momentum distributions 0.25 PW/cm2 0.6 0.2 0.4  Z (ToF) Y (jet direction) X (laser beam propagation)  P|| = Pz - momentum along laser polarisation P = (Px2 + Py2)1/2  = 0.45 Area where the spectrometer has no resolution in the transverse direction He 1.0 PW/cm2 0.6 0.2 0.4  = 0.42 Ne 1.0 PW/cm2 P [a.u.] 0.6 0.2 0.4  = 0.36 Ar 1.0 PW/cm2 -1.0 -0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0 P [a.u.]

Two-dimensional electron momentum distributions Ne 1.0 PW/cm2  0.6 0.2 0.4 23 fs Ne 0.4 PW/cm2 0.6 0.2 0.4 23 fs P [a.u.] P [a.u.] -1.0 -0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0 Ne 0.4 PW/cm2 0.6 0.2 0.4 6-7 fs Ultrashort pulses No resonance-like structures resolved!

Single ionisation: Conclusions Smooth transition from multiphoton to tunneling ionisation Target dependence near zero momenta: Minimum for He and Ne, maximum for Ar No ponderomotive shifts observed – resonance-like structures: Contribution of resonant processes can explain the absence of ponderomotive shifts Rich structures in two-dimensional electron momentum spectra Multiphoton features of the process are washed out for a few-cycle pulse

Double and multiple ionisation of atoms

Features of strong-field ionisation Double and multiple ionisation of atoms Features of strong-field ionisation 1014 – 1015 W/cm2 wt E(t) = E0 sin(wt) Field (tunnel) ionisation Recollision Drift momentum related to phase pd = (qE0/w)cos(wt) = 2q (Up)1/2 cos(wt)

Mechanisms for strong-field double ionisation pion|| sequential 2q(Up)1/2 nonsequential pion|| recollision (e,2e) recollision-excitation subsequent tunnelling pion||

He, Ne, Ar: strong-field double ionisation 4(Up)1/2 sequential V. B. L. de Jesus et al. JPB 37 (2004) L161

Influence of the atomic structure – a simple model Cross sections for: Initial phase average: Excitation: Van Regemorter formula Ionization: Lotz-type formula V. B. L. de Jesus et al. JPB 37 (2004) L161

23 fs Multiple ionisation Ne2+ Ne3+ Ne4+ P / a.u. 1.5 PW/cm2 Sequential

23 fs Ar3+ Ar4+ 0.3 PW/cm2 P / a.u. 0.5 PW/cm2 0.8 PW/cm2 1.2 PW/cm2 Sequential

Multiple ionisation of Ar: ion yield ratio Y2+ / Y+ Y3+ / Y+ Y4+ / Y+ Y3+ / Y2+ Y4+ / Y2+ Y4+ / Y3+

Mechanisms for strong-field multiple ionisation Ne  Ne+  Nen+ nonsequential Recollision (e,ne) Field ionisation 2n(Up)1/2 Drift momentum Ar  Arm+  Arn+ sequential / nonsequential Recollision (e,(nm+1)e) Field ionisation (2n 2.52(m 1))(Up)1/2 Feuerstein et al. JPB 33 (2000) L823

Ar  Arm+  Arm+*  Arn+ Ar  Ar2+  Ar4+ Ar  Ar2+  Ar3+ 0.3 PW/cm2 P / a.u. 0.5 PW/cm2 0.8 PW/cm2 1.2 PW/cm2 1.5 PW/cm2 2.0 PW/cm2 Sequential 6(Up)1/2 1.2 PW/cm2 1.5 PW/cm2 2.0 PW/cm2 P / a.u. 8(Up)1/2 Ar  Arm+  Arm+*  Arn+ Role of excited states? Recollision excitation Field ionisation  life time (pulse duration)

Lifetime of excited states? - Pulse duration dependence Ar2+ 0.5 PW/cm2 P / a.u. 23 fs 6-7 fs Ar3+ 1.2 PW/cm2 P / a.u. Ar4+ 1.2 PW/cm2 P / a.u.

Multiple ionisation of Ar: ion yield ratio Y2+ / Y+ Y3+ / Y+ Y4+ / Y+ 23 fs 6-7 fs Y3+ / Y2+ Y4+ / Y2+ Y4+ / Y3+

Double and multiple ionisation: Conclusions First systematic study of ion momentum distributions for strong-field double and multiple ionisation of noble gases (He, Ne, Ar) Core excitation during recollision dominates nonsequential double ionisation for He and Ar Recollision (e,ne) is the dominating mechanism for creation of Ne2+, Ne3+ and Ne4+ ions (double-hump structure) Multiple ionisation mechanism for argon is more complex – most likely combined sequential and nonsequential processes – enhanced double-hump structure for ultrashort pulses indicates importance of core excitations

Molecular fragmentation Confusion reigns when Sir James Dwighton is murdered... Luckily, his broken clock tells the tale -- or does it? What do broken (Coulomb-exploded) molecular clocks tell us? Does confusion reign also here?

Hydrogen molecular potential curves in a strong laser field Fragmentation channels Single ionisation (SI): H2  H2+ + e- 2ppu H+ + H+ Dissociation: H2+  H+ + H0 H+ + H(2p) 1- and 2-photon net absorption recollision - excitation 2psu H+ + H(1s) 1w Double ionisation (Coulomb explosion, CE) H2+  H+ + H+ + e- Dressed states 2w 1ssg 3w H2+ Sequential (field) double ionisation (SDI): enhanced @ R = 5 – 10 a.u. (CREI) H(1s) + H(1s) Recollision - e,2e H2 - excitation with subsequent field ionisation

H2+ (D2+) as a molecular clock Principle of a molecular clock: based on the propagation of electronic (recollision) and nuclear wavepacktes H. Niikura et al. Nature 417 (2002) 917, 421 (2003) 826 But: works only if the fragmentation path can be identified Recent progress: A.S. Alnaser et al. PRL 91 (2003) 163002 Experiment: coincident detection of emitted protons Theory: comprehensive model including recollision-excitation and ionisation X.M. Tong, Z.X. Zhao and C.D. Lin PRL 91 (2003) 233203 PRA 68 (2003) 043412  recollision-excitation is the dominating mechanism for both dissociation and double ionisation channels producing high-energy fragments

From short to ultrashort pulses: non-coincident spectra 25 fs 0.2 PW/cm2 0.3 PW/cm2 0.5 PW/cm2 Dissociation H2+ CE 2 w 1 w counts 10 fs 0.5 PW/cm2 6 fs 0.2 PW/cm2 0.5 PW/cm2 0.8 W/cm2 Time-of–flight [ns]

From short to ultrashort pulses: coincident spectra 40 20 -20 -40 -20 0 20 40 P1 || [a.u.] P2 || [a.u.] counts (log scale) 23 fs Recollision CREI Due to momentum conservation true coincidence events lie near the P1 || = - P2 || diagonal!

6 fs 40 counts (log scale) P2 || [a.u.] regions, where 20 -20 -40 -20 0 20 40 Recollision regions, where false coincidences can not be excluded Sequential ionisation? P2 || [a.u.] counts (log scale) P1 || [a.u.]

Molecular fragmentation: Conclusions Dynamics of the H2 fragmentation depends drastically on the pulse duration Charge-resonant enhanced ionisation (CREI) is suppressed for 6 fs Coincidence measurements provide a method to distinguish dissociation and double ionisation contributions within the same energy range

Open questions and outlook Single ionisation: More detailed measurements with well-controlled few-cycle pulses Other targets, broader range of , molecules, atomic hydrogen Ultrashort pulses: absolute phase effects Multiple ionisation: Towards higher and lower intensities (transition to sequential regime / threshold effects fpr recollision More on correlated electron dynamics Ultrashort pulses: absolute phase effects Molecular fragmentation: Origin of low-energy Coulomb explosion peaks – dependence on temporal pulse shape Branching ratios for different fragmentation channels Electron dynamics – breakdown of Born-Oppenheimer approximation?

Acknowledgment Claus Dieter Schröter Robert Moshammer Max-Planck-Institut für Kernphysik Acknowledgment Claus Dieter Schröter Robert Moshammer (Head of the group) Artem Rudenko Karl Zrost Vitor Luiz Bastos de Jesus