Laura A. Moody, Steven Kelly, Ester Rabbinowitsch, Jane A. Langdale 

Slides:



Advertisements
Similar presentations
A Histone H3 Lysine-27 Methyltransferase Complex Represses Lateral Root Formation in Arabidopsis thaliana  Gu Xiaofeng , Xu Tongda , He Yuehui   Molecular.
Advertisements

A Robust Network of Double-Strand Break Repair Pathways Governs Genome Integrity during C. elegans Development  Daphne B. Pontier, Marcel Tijsterman 
Volume 6, Issue 4, Pages (October 2000)
Spatial Auxin Signaling Controls Leaf Flattening in Arabidopsis
Volume 2, Issue 6, Pages (November 2009)
Jurian Schuijers, Laurens G. van der Flier, Johan van Es, Hans Clevers 
Volume 14, Issue 9, Pages (May 2004)
Volume 14, Issue 5, Pages (March 2004)
Evolutionary Genetics: Smells like a Pseudo-pseudogene
Volume 16, Issue 9, Pages (May 2006)
Lacy J. Barton, Belinda S. Pinto, Lori L. Wallrath, Pamela K. Geyer 
Stem Cell Regulation by Arabidopsis WOX Genes
Volume 4, Issue 1, Pages (January 2011)
A Feedback Mechanism Controlling SCRAMBLED Receptor Accumulation and Cell- Type Pattern in Arabidopsis  Su-Hwan Kwak, John Schiefelbein  Current Biology 
Zhongjuan Zhang, Elise Tucker, Marita Hermann, Thomas Laux 
Volume 2, Issue 1, Pages (January 2009)
Volume 8, Issue 8, Pages (August 2015)
Volume 25, Issue 24, Pages (December 2015)
Temporal Control of Plant Organ Growth by TCP Transcription Factors
Volume 23, Issue 20, Pages (October 2013)
Volume 9, Issue 2, Pages (February 2016)
Volume 28, Issue 3, Pages e5 (February 2018)
Melissa Hernandez-Fleming, Ethan W. Rohrbach, Greg J. Bashaw 
Volume 21, Issue 12, Pages (June 2011)
Douglas J Guarnieri, G.Steven Dodson, Michael A Simon  Molecular Cell 
Volume 14, Issue 1, Pages (January 2004)
Volume 14, Issue 9, Pages (May 2004)
Bojan Gujas, Carlos Alonso-Blanco, Christian S. Hardtke 
Rhamnose-Containing Cell Wall Polymers Suppress Helical Plant Growth Independently of Microtubule Orientation  Adam M. Saffer, Nicholas C. Carpita, Vivian.
Volume 10, Issue 7, Pages (July 2017)
Volume 16, Issue 6, Pages (March 2006)
Expression of a microRNA-Resistant Target Transgene Misrepresents the Functional Significance of the Endogenous microRNA: Target Gene Relationship  Junyan.
The WUSCHEL Related Homeobox Protein WOX7 Regulates the Sugar Response of Lateral Root Development in Arabidopsis thaliana  Danyu Kong, Yueling Hao, Hongchang.
Volume 22, Issue 20, Pages (October 2012)
Volume 25, Issue 23, Pages (December 2015)
Volume 10, Issue 11, Pages (November 2017)
Volume 26, Issue 1, Pages (January 2016)
Volume 26, Issue 12, Pages (June 2016)
DNA Topoisomerase VI Is Essential for Endoreduplication in Arabidopsis
Volume 18, Issue 1, Pages (January 2008)
The Chemokine SDF1a Coordinates Tissue Migration through the Spatially Restricted Activation of Cxcr7 and Cxcr4b  Guillaume Valentin, Petra Haas, Darren.
Volume 19, Issue 14, Pages (July 2009)
A Novel Class of MYB Factors Controls Sperm-Cell Formation in Plants
Volume 9, Issue 7, Pages (July 2016)
Volume 26, Issue 4, Pages e5 (January 2019)
Han-Wei Shih, Cody L. DePew, Nathan D. Miller, Gabriele B. Monshausen 
The Arabidopsis Transcription Factor AtTCP15 Regulates Endoreduplication by Modulating Expression of Key Cell-cycle Genes  Li Zi-Yu , Li Bin , Dong Ai-Wu.
Volume 27, Issue 8, Pages (April 2017)
Volume 16, Issue 11, Pages (June 2006)
Volume 18, Issue 9, Pages (May 2008)
AtABCG29 Is a Monolignol Transporter Involved in Lignin Biosynthesis
Volume 10, Issue 1, Pages (January 2017)
Tyson J. Edwards, Marc Hammarlund  Cell Reports 
Plant TRAF Proteins Regulate NLR Immune Receptor Turnover
Volume 4, Issue 4, Pages (July 2011)
Physcomitrella patens Auxin-Resistant Mutants Affect Conserved Elements of an Auxin- Signaling Pathway  Michael J. Prigge, Meirav Lavy, Neil W. Ashton,
Volume 23, Issue 11, Pages (June 2013)
Volume 6, Issue 5, Pages (September 2013)
Xiang Han, Hao Yu, Rongrong Yuan, Yan Yang, Fengying An, Genji Qin
Volume 23, Issue 17, Pages (September 2013)
Volume 10, Issue 4, Pages (February 2000)
Volume 26, Issue 7, Pages (April 2016)
Volume 15, Issue 23, Pages (December 2005)
Volume 25, Issue 8, Pages (April 2015)
Volume 4, Issue 5, Pages (September 2011)
Volume 2, Issue 1, Pages (January 2009)
Volume 36, Issue 3, Pages (February 2016)
Volume 24, Issue 16, Pages (August 2014)
Volume 18, Issue 9, Pages (May 2008)
Wang Long , Mai Yan-Xia , Zhang Yan-Chun , Luo Qian , Yang Hong-Quan  
Presentation transcript:

Genetic Regulation of the 2D to 3D Growth Transition in the Moss Physcomitrella patens  Laura A. Moody, Steven Kelly, Ester Rabbinowitsch, Jane A. Langdale  Current Biology  Volume 28, Issue 3, Pages 473-478.e5 (February 2018) DOI: 10.1016/j.cub.2017.12.052 Copyright © 2018 The Authors Terms and Conditions

Figure 1 3D Growth Is Abolished in Ppnog1-R Mutants (A–D) 7-day-old (A and C) and 1-month-old (B and D) wild-type (WT) (A and B) and Ppnog1-R (C and D) plants showing protonemal filaments (A and C) and the presence (WT, B) or absence (Ppnog1-R, D) of gametophores. (E) Mean number of gametophores/culture (n = 10) ± SEM (WT = 99.4 ± 5.62; Ppnog1-R = 0 ± 0; t test p < 0.05 ∗∗∗). Scale bars, 100 µm (A and C) and 1 mm (B and D). See Figure S1 for response to cytokinin and auxin. Current Biology 2018 28, 473-478.e5DOI: (10.1016/j.cub.2017.12.052) Copyright © 2018 The Authors Terms and Conditions

Figure 2 Identification of the PpNOG1 Locus through Combined Somatic Hybridization and Bulk Segregant Analysis (A–C) Representative phenotype of 1-month-old wild-type Vx plant with gametophores (A), Ppnog1-R plant lacking gametophores (B), and Ppnog1-R/Gd hybrid exhibiting restored gametophore formation (C). Scale bars, 1 mm. (D) Phenotype of progeny derived from three independent Ppnog1-R/Gd hybrid sporophytes. Observed numbers are consistent with the hybrid gametophores being diploid, and the fertilized sporophytes being tetraploid. Chi-square test; p < 0.05 ∗∗∗. (E) Candidate genes in the genetic interval containing the PpNOG1 genetic locus. The C > T transition in gene 32970008 (red) generated a premature stop codon. See Figure S2 for overview of strategy. Current Biology 2018 28, 473-478.e5DOI: (10.1016/j.cub.2017.12.052) Copyright © 2018 The Authors Terms and Conditions

Figure 3 A Premature Stop Codon in PpNOG1 Abolishes 3D Growth (A) PpNOG1 transcripts in parental Vx and Ppnog1-R. Blocks, exons; asterisks, in-frame stop codon. Scale bar, 1 kb. (B) PpNOG1 protein in Vx contains a ubiquitin-associated domain (UBA), which is missing in Ppnog1-R. # amino acid residues indicated. (C) Mean number of gametophores/culture (n = 10) in Vx, nog1-R, and five independent Ppnog1-R lines complemented with full-length PpNOG1 cDNA. Error bars ± SEM. (D–G) 1-month-old Vx (D), Ppnog1-R (E), complemented Ppnog1-R (F), Ppnog1-D1 (G), and Ppnog1-D2 (H) disruptant mutants. Scale bars, 1 mm. See Figure S3 and Data S1 for details of complementation and disruptant constructs. Current Biology 2018 28, 473-478.e5DOI: (10.1016/j.cub.2017.12.052) Copyright © 2018 The Authors Terms and Conditions

Figure 4 PpNOG1 Function (A–L) Propidium iodide stained Vx (A–D) and Ppnog1-R (E–L) side-branch cells (A and E) and buds at 2- (B and F), 3- (C, G, and H), 4- (D, I, and J), and 5- (K and L) cell stages. Scale bars, 10 μm. •, gametophore initial. (M–O) Relative transcript levels in protonemata: PpNOG1 in wild-type ± BAP and/or NAA (M) and PpAPB1-4 in Vx and the Ppnog1-D1 and the Ppnog1-D2 disruptants (N and O). ANOVA, ∗∗∗p < 0.05. (P and Q) Model for PpNOG1 function: PpDEK1 and PpNOG1 act antagonistically during side-branch initiation to regulate PpAPB transcription (P) and then act together to enable divisions that produce the gametophore initial (Q). See Figure S4 for NOG1 phylogeny. Current Biology 2018 28, 473-478.e5DOI: (10.1016/j.cub.2017.12.052) Copyright © 2018 The Authors Terms and Conditions