Chapter 7 Analyzing Conic Sections

Slides:



Advertisements
Similar presentations
Chapter 7 Analyzing Conic Sections
Advertisements

Section 11.6 – Conic Sections
Conic Sections MAT 182 Chapter 11
10.1 Conics and Calculus. Each conic section (or simply conic) can be described as the intersection of a plane and a double-napped cone. CircleParabolaEllipse.
Chapter 9 Analytic Geometry.
Hyperbola – a set of points in a plane whose difference of the distances from two fixed points is a constant. Section 7.4 – The Hyperbola.
Hyperbolas and Rotation of Conics
Conic Sections Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Conic Sections Conic sections are plane figures formed.
10.3 Hyperbolas. Circle Ellipse Parabola Hyperbola Conic Sections See video!
Advanced Geometry Conic Sections Lesson 4
What is the standard form of a parabola who has a focus of ( 1,5) and a directrix of y=11.
Review Day! Hyperbolas, Parabolas, and Conics. What conic is represented by this definition: The set of all points in a plane such that the difference.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
50 Miscellaneous Parabolas Hyperbolas Ellipses Circles
& & & Formulas.
Jeopardy CirclesParabolasEllipsesHyperbolasVocabulary Q $100 Q $200 Q $300 Q $400 Q $500 Q $100 Q $200 Q $300 Q $400 Q $500 Final Jeopardy Source:
Conic Sections Advanced Geometry Conic Sections Lesson 2.
Section 9.3 The Parabola. Finally, something familiar! The parabola is oft discussed in MTH 112, as it is the graph of a quadratic function: Does look.
Conic Sections Curves with second degree Equations.
Ellipses Topic 7.4. Definitions Ellipse: set of all points where the sum of the distances from the foci is constant Major Axis: axis on which the foci.
Conic Sections.
Ellipses Topic Definitions Ellipse: set of all points where the sum of the distances from the foci is constant Major Axis: axis on which the foci.
Distance The distance between any two points P and Q is written PQ. Find PQ if P is (9, 1) and Q is (2, -1)
Conics. Conic Sections - Definition A conic section is a curve formed by intersecting cone with a plane There are four types of Conic sections.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
10.1 Conics and Calculus.
CONIC SECTIONS.
An Ellipse is the set of all points P in a plane such that the sum of the distances from P and two fixed points, called the foci, is constant. 1. Write.
Objectives Identify and transform conic functions.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Analyzing Conic Sections
Chapter 6 Analytic Geometry. Chapter 6 Analytic Geometry.
10.1 Circles and Parabolas Conic Sections
Chapter 11 Review HW: Pg 592 Chapter Test # 1-8,
Translating Conic Sections
Conics Parabolas, Hyperbolas and Ellipses
6-3 Conic Sections: Ellipses
6.2 Equations of Circles +9+4 Completing the square when a=1
Conic Sections College Algebra
PC 11.4 Translations & Rotations of Conics
GRAPHS OF CONIC SECTIONS OR SECOND DEGREE CURVES
Hyperbolas 4.4 Chapter 10 – Conics. Hyperbolas 4.4 Chapter 10 – Conics.
12.5 Ellipses and Hyperbolas.
12.5 Ellipses and Hyperbolas.
6-3 Conic Sections: Ellipses
Chapter 9 Conic Sections.
Section 10.2 – The Ellipse Ellipse – a set of points in a plane whose distances from two fixed points is a constant.
Writing Equations of Conics
Review Circles: 1. Find the center and radius of the circle.
Parabolas Mystery Circles & Ellipses Hyperbolas What am I? $100 $100
Chapter 6: Analytic Geometry
Test Dates Thursday, January 4 Chapter 6 Team Test
2/24/2019 5:14 AM 11.3: Parabolas.
Conic Sections: Hyperbolas
Analyzing the Parabola
U5D5 Have out: Bellwork: Answer the following for the equation:
Chapter 10 Conic Sections.
Analyzing Conic Sections
The Hyperbola Week 18.
Hyperbolas.
4-2 Parabolas.
THE ELLIPSE Week 17.
Section 11.6 – Conic Sections
What are Conic Sections?
Conics Review.
Chapter 10 Conic Sections.
10.6 – Translating Conic Sections
Jeopardy Solving for y Q $100 Q $100 Q $100 Q $100 Q $100 Q $200
M3CSD5 Have out: Bellwork: Answer the following for the equation:
Presentation transcript:

Chapter 7 Analyzing Conic Sections Jennifer Huss

7-1 The Distance and Midpoint Formulas To find the distance between any two points (a, b) and (c, d), use the distance formula: Distance = (c – a)2 + (d – b)2 The midpoint of a line is halfway between the two endpoints of a line To find the midpoint between (a, b) and (c, d), use the midpoint formula: Midpoint = (a + c) , (b + d) 2 2

Distance = [(-8) – (-4)]2 + (4 – 2)2 7-1 Example Find the distance between (-4, 2) and (-8, 4). Then find the midpoint between the points. Distance = [(-8) – (-4)]2 + (4 – 2)2 Distance = (-8 + 4)2 + (2)2 Distance = (-4)2 + (2)2 Distance = 16 + 4 Distance= 20 Midpoint = (-4) + (-8) , 2 + 4 2 2 Midpoint = -12 , 6 2 2 Midpoint = ( -6, 3)

7-1 Problems Find the distance between (0, 1) and (1, 5). Find the midpoint between (6, -5) and (-2, -7). Find the value for x if the Distance = 53 and the endpoints are (-3, 2) and (-10, x). If you are given an endpoint (3, 2) and midpoint (-1, 5), what are the coordinates of the other endpoint? 1) 17 2) (2, -6) 3) x = 0 or x = 4 4) (-5, 8)

7-2 Parabolas A parabola is a set of points on a plane that are the same distance from a given point called the focus and a given line called the directrix The axis of symmetry is perpendicular to the directrix and passes through the parabola at a point called the vertex The latus rectum goes through the focus and is perpendicular to the axis of symmetry If the equation of the parabola begins with x= then the parabola is not a function (fails the vertical line test) Axis of Symmetry Parabola Focus Latus Rectum Vertex Directrix

7-2 Parabolas (cont.) Important Information About the Parabolas Form of the equation y = a (x – h)2 + k x = a (y – k)2 + h Axis of Symmetry x = h y = k Vertex (h, k) Focus (h, k + 1/4a) (h + 1/4a, k) Directrix y = k – (1/4)a x = h – (1/4)a Direction of Opening Opens upward when a > 0 and downward when a < 0 Opens to the right when a > 0 and to the left when a < 0 Length of Latus Rectum 1/a units

7-2 Example Write y = x2 + 4x + 1 in the form y = a (x – h)2 + k and name the vertex, axis of symmetry, and the direction the parabola opens. You can always check your answers by graphing. y = x2 + 4x + 1 y = (x2 + 4x + o ) + 1 – o y = (x2 + 4x + 4) + 1 – 4 y = (x + 2)2 – 3 Vertex: (-2, -3) Axis of Symmetry: x = -2 The parabola opens up because a = 1 so a > 0.

7-2 Problems Graph the equation x2 = 8y. For the parabola y2 = -16x name the vertex, focus, length of latus rectum, and direction of opening. Also, give the equations of the directrix and axis of symmetry. Given the vertex (4, 1) and a point on the parabola (8, 3), find the equation of the parabola. Graph for #2 Graph for #1 2) Vertex: (0,0) Focus: (-4,0) Latus rectum: 16 Direction: left Directrix: x = 4 Axis of symmetry: y = 0 3) y = (1/8)(x – 4)2 + 1

7-3 Circles A circle is a set of points equidistant from a center point The radius is a line between the center and any point on the circle The equation of a circle is (x – h)2 + (y – k)2 = r2 where the radius is r and the vertex is (h, k) Sometimes you need to complete the square twice to get the equation in this form (once for x and once for y) Radius (r) Vertex (k, h)

Radius = 7 and Center is (-2, 6) 7-3 Examples Find the center and radius of x2 + y2 + 4x – 12y – 9 = 0 and then graph the circle. x2 + 4x + o + y2 – 12y + o = 9 + o + o x2 + 4x + 4 + y2 – 12y + 36 = 9 + 4 + 36 (x + 2)2 + (y – 6)2 = 49 Radius = 7 and Center is (-2, 6)

7-3 Examples (cont.) If a circle has a center (3, -2) and a point on the circle (7, 1), write the equation of the circle. Find the radius by the distance formula. Radius = (7 – 3)2 + (1 – (-2))2 r = (4)2 + (3)2 r = 16 + 9 r = 25 r = 5 The equation of the circle will be (x – 3)2 + (y + 2)2 = 25

1) x2 + (y + 2)2 = 4 Center (0, -2) and Radius 2 2) x2 + y2 = 20 7-3 Problems Find the center and radius of x2 + y2 + 4y = 0. Then graph the circle. If a circle has a center (0, 0) and a point on the circle (-2, -4) write the equation of the circle. 1) x2 + (y + 2)2 = 4 Center (0, -2) and Radius 2 2) x2 + y2 = 20 #1

Ellipses An ellipse is the set of all points in a plane such that the sum of the distances from the foci is constant An ellipse has two axes of symmetry The axis of the longer side of the ellipse is called the major axis and the axis of the shorter side is the minor axis The focus points always lie on the major axis The intersection of the two axes is the center of the ellipse Major Axis Focus Center Minor Axis Focus

Ellipses (cont.) Important Notes: In the above chart, c = a2 – b2 Equation of the Ellipse Foci Points Is the major axis horizontal or vertical? Center of the Ellipse (x – h)2 + (y – k)2 a2 b2 ( h + c, k) and (h – c, k) Horizontal (h, k) b2 a2 (h, k + c) and (h, k – c) Vertical = 1 = 1 Important Notes: In the above chart, c = a2 – b2 a2 > b2 always so a2 is always the larger number If the a2 is under the x term, the ellipse is horizontal, if the a2 is under the y term the ellipse is vertical You can tell that you are looking at an ellipse because: x2 is added to y2 and the x2 and y2 are divided by different numbers (if numbers were the same, it’s a circle)

Example Given an equation of an ellipse 16y2 + 9x2 – 96y – 90x = -225 find the coordinates of the center and foci as well as the lengths of the major and minor axis. Then draw the graph. 16 (y2 – 6y + o) + 9 (x2 – 10x + o) = -225 + 16 (o) + 9(o) 16 (y2 – 6y + 9) + 9 (x2 – 10x + 25) = -225 + 16(9) + 9(25) 16 (y – 3)2 + 9 (x – 5)2 = 144 (y – 3)2 + (x – 5)2 9 16 = 1 Center: (5, 3) 16 > 9 so the foci are on the vertical axis c = 16 – 9 c = 7 Foci: ( 5 + 7, 3) and (5 – 7, 3) Major Axis Length = 4 (2) = 8 Minor Axis Length = 3 (2) = 6

Problems For 49x2 + 16y2 = 784 find the center, the foci, and the lengths of the major and minor axes. Then draw the graph. Write an equation for an ellipse with foci (4, 0) and (-4, 0). The endpoints of the minor axis are (0, 2) and (0, -2). Foci: (0, - 33) (0, 33) Center: (0, 0) Length of major= 14 Length of minor= 8 X2 + y2 20 4 = 1 #1

Hyperbolas A hyperbola is a set of all points on a plane such that the absolute value of the difference (subtraction) of the distances from a point to the two foci is constant The center is the midpoint of the segment connecting the foci The vertex is the point on the hyperbola closest to the center The asymptotes are lines the hyperbola can approach but never touch The transverse axis goes through the foci The conjugate axis is perpendicular to the transverse axis at the center point Hyperbola Conjugate Axis Transverse Axis Asymptotes Focus Center Vertex

Hyperbolas (cont.) Equation of Hyperbola Center Foci Points Equation of Asymptote Vertex Transverse Axis (x – h)2 _ (y – k)2 a2 b2 (h, k) (h – c, k) and (h + c, k) y = +/- (b/a) x (h +a, k) and (h – a, k) Horizontal (y – k)2 _ (x – h)2 a2 b2 (h, k – c) and (h, k + c) (c = a2 + b2 ) y = +/- (a/b) x (h, k + a) and (h, k – a) Vertical = 1 = 1 You must be looking at a hyperbola because the x2 and y2 terms are subtracted (x2 – y2) or (y2 – x2)

Example Write the standard form of the equation of the hyperbola 144y2 – 25x2 – 576y – 150x = 3249. Then find the coordinates of the center, the vertices, the foci, and the equation of the asymptotes. Graph the hyperbola and the asymptotes. 144(y2 – 4y + o) – 25(x2 + 6x + o) = 3249 + 144(o) + 25(o) 144(y2 – 4y + 4) – 25(x2 + 6x + 9) = 3249 + 144(4) + 25(9) 144(y – 2)2 – 25(x + 3)2 = 3600 (y-2)2 _ (x + 3)2 25 144 = 1 Center: (-3, 2) a = 5 so the vertices are (-3, 7) and (-3, -3) a2 + b2 = c2 25 + 144 = c2 c = 13 The foci are (-3, 15) and (-3, -11).

y – 2 = (5/12) x + 15/12 y – 2 = (-5/12) x + -15/12 Example (cont.) Asymptotes have the formula y = +/- a/b x and we have center (-3, 2) and slopes +/- 5/12. y – 2 = 5/12 (x + 3) y – 2 = -5/12 (x + 3) y – 2 = (5/12) x + 15/12 y – 2 = (-5/12) x + -15/12 y = (5/12) x + 13/4 y = (-5/12) x + 3/4

Problems Find the coordinates of the vertices and the foci. Give the asymptote slopes for each hyperbola. Then draw the graph. x2 _ y2 9 49 2) 25x2 – 4y2 = 100 = 1 Vertices: (-2, 0) (2, 0) Foci: ( 29, 0) (- 29, 0) Slope = +/- 5/2 Vertices: (-3, 0) (3, 0) Foci: (- 58, 0) ( 58, 0) Slope = +/- 7/3 2) 1)

7-6 Example Identify 9x2 + 16y2 – 54x + 64y + 1 = 0 as one of the four conic sections. Then graph the conic section. 9x2 + 16y2 – 54x + 64y = -1 9 (x2 – 6x + o) + 16(y2 + 4y + o) = -1 + 9(o) + 16(o) 9 (x2 – 6x + 9) + 16(y2 + 4y + 4) = -1 + 9(9) + 16(4) 9(x – 3)2 + 16(y + 2)2 = 144 (x – 3)2 (y + 2)2 9 This conic section is an ellipse. + = 1

1) (x + 3)2 + (y)2 = 16 circle 2) (x – 3)2 _ (y + 1)2 hyperbola Problems Write the equation in standard form and decide if the conic section is a parabola, a circle, an ellipse, or a hyperbola. Then graph the equation. x2 + y2 + 6x = 7 5x2 – 6y2 – 30x – 12y + 9 = 0 1) (x + 3)2 + (y)2 = 16 circle 2) (x – 3)2 _ (y + 1)2 hyperbola 6 5 = 1 2) 1)