Fig. 2 Characterizing GLP1R signaling pathways and pharmacology activated by eGLP1-MALAT1-ASO (•) and eGLP1-FOXO1-ASO (▪) compared to eGLP1 peptide (○)

Slides:



Advertisements
Similar presentations
Fig. 5 Correlation of RNA expression and protein abundance.
Advertisements

Fig. 4 Altitudinal distributions of ice thickness change (m year−1) for the 650 glaciers. Altitudinal distributions of ice thickness change (m year−1)
Fig. 2 Transport properties of a BP transistor at low temperature.
Fig. 4 Ballistic simulation of BP FETs.
Fig. 2 Global production, use, and fate of polymer resins, synthetic fibers, and additives (1950 to 2015; in million metric tons). Global production, use,
Fig. 4 INS spectra of different human bones from the Roman period [humerus, ulna, femur, and fibula from the same skeleton, Guidonia-Montecelio, Italy.
Fig. 3 Vibrational spectra of human bones from the Copper Age (Scoglietto cave, Italy). Vibrational spectra of human bones from the Copper Age (Scoglietto.
Vibrational spectra of medieval human bones (Leopoli-Cencelle, Italy)
Fig. 3 Oil, gas, and FP water variations with time.
Fig. 5 Thermal conductivity of n-type ZrCoBi-based half-Heuslers.
Fig. 1 Map of water stress and shale plays.
Fig. 1 Examples of experimental stimuli and behavioral performance.
Fig. 4 Resynthesized complex boronic acid derivatives based on different scaffolds on a millimole scale and corresponding yields. Resynthesized complex.
HT synthesis of boronic acids using the building block approach
Fig. 6 Comparison of properties of water models.
Fig. 1 Mean and median RCR (Relative Citation Ratio) of Roadmap Epigenomics Program research articles for each year. Mean and median RCR (Relative Citation.
Fig. 2 Reference-fixing experiment, results.
Fig. 2 HHKO mice exhibit improved glucose tolerance by increasing plasma incretin levels and insulin secretion. HHKO mice exhibit improved glucose tolerance.
Fig. 2 The glucose binding and charge-switch study.
Fig. 3 Glucose- and structure-dependent insulin release.
Fig. 2 Stratigraphic profile of the Area 15 excavation block showing the diagnostic cultural materials and components alongside the stratigraphic sequence.
Fig. 3 Rotation experiment, setup.
Fig. 1 Product lifetime distributions for the eight industrial use sectors plotted as log-normal probability distribution functions (PDF). Product lifetime.
FTIR-ATR spectra of Neolithic faunal bones (Mora Cavorso cave, Italy)
Fig. 3 FcRL1 is passively recruited into B cell immunological synapses upon BCR engagement in primary spleen B cells. FcRL1 is passively recruited into.
Fig. 1 Distribution of total and fake news shares.
Fig. 2 2D QWs of different propagation lengths.
Fig. 2 ODN enhances EV transfer between cells expressing TLR9.
Fig. 4 EUV TG signal from Si.
Fig. 6 WPS imaging of different chemical components in living cells.
Fig. 4 Cdc42 enhances the cellular uptake of EVs.
Fig. 4 DFT ωB97x/def2-TZVPP atomic charges on the sulfur atom of substituted thioaldehyde and AIMNet prediction with a different number of iterative passes.
The changes in the water intensity of hydraulic fracturing with time
Fig. 1 Histograms of the number of first messages received by men and women in each of our four cities. Histograms of the number of first messages received.
Fig. 5 Schematic phase diagrams of Ising spin systems and Mott transition systems. Schematic phase diagrams of Ising spin systems and Mott transition systems.
Fig. 4 OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with different pH. OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with.
Fig. 1 Average contribution (million metric tons) of seafood-producing sectors, 2009–2014. Average contribution (million metric tons) of seafood-producing.
Fig. 3 GIWAXS pattern of perovskite films with varied ligands.
Fig. 3 Production of protein and Fe(II) at the end of growth correlated with increasing concentrations of ferrihydrite in the media that contained 0.2.
Fig. 2 Schematic drawings of Göbekli Tepe skulls.
Fig. 4 SPICE simulation of stochasticity.
Fig. 1 Size fractions of MPPs in different fertilizers.
Fig. 2 Sources of plastic waste imports into China in 2016 and cumulative plastic waste export tonnage (in million MT) in 1988–2016. Sources of plastic.
Fig. 5 Comparison of the liquid products generated from photocatalytic CO2 reduction reactions (CO2RR) and CO reduction reactions (CORR) on two catalysts.
Schematic of the proposed brain-controlled assistive hearing device
Fig. 3 We posit the hyperconcentrated period of domain news, characterized by high article volume and similarity, which G-causes public attention changes.
Fig. 2 News volume and median article similarity as predictors of public attention in the domain Drones. News volume and median article similarity as predictors.
Fig. 1 Catalytic performance of Pd/Al2O3 catalysts with different particle sizes in aerobic oxidation of benzyl alcohol. Catalytic performance of Pd/Al2O3.
Fig. 1 Location of the Jirzankal Cemetery.
Fig. 4 CO2 emission changes triggered by the JJJ clean air policy.
Fig. 2 Simulations of possible doping positions and band structures.
Multiplexed four- and eight-channel devices for rapid processing
Fig. 3 Effects of ASO and eGLP1-ASO conjugates on gene expression and protein levels in vitro in cell lines and primary mouse islet cells. Effects of ASO.
Fig. 3 Comparisons of NDVI trends over the globally vegetated areas from 1982 to Comparisons of NDVI trends over the globally vegetated areas from.
Fig. 1 Schematic depiction of a paradigm for rapid and guided discovery of materials through iterative combination of ML with HiTp experimentation. Schematic.
Fig. 4 Mapping of abundance of the most dominant bacterial and archaeal phyla across France. Mapping of abundance of the most dominant bacterial and archaeal.
Fig. 4 Spatial mapping of the distribution and intensity of industrial fishing catch. Spatial mapping of the distribution and intensity of industrial fishing.
Fig. 4 Single-particle contact angle measurements.
Fig. 2 Supraballs and films from binary SPs.
Fig. 3 Performance of the generative model G, with and without stack-augmented memory. Performance of the generative model G, with and without stack-augmented.
Fig. 1 Schematic structure of a fluorescently labeled eGLP1-conjugated MALAT1 ASO and internalization of fluorescent eGLP1 and eGLP1-MALAT1-ASO. Schematic.
Fig. 4 Behavior of resistance peak near density nm = 5.
Fig. 2 Comparison between the different reflective metasurface proposals when θi = 0° and θr = 70°. Comparison between the different reflective metasurface.
Fig. 1 Design principle and SEM characterization of super-origami DNA nanostructures with n-tuples. Design principle and SEM characterization of super-origami.
Fig. 1 Overview of amber clast with synchrotron x-ray μCT image of articulated snake skeleton (DIP-S-0907). Overview of amber clast with synchrotron x-ray.
Fig. 3 Rural-urban gap of per capita income in China from 1978 to Rural-urban gap of per capita income in China from 1978 to The income of.
Fig. 4 Effects of individual picosecond and microsecond pulses.
Fig. 3 Calculated electronic structure of ZrCoBi.
Fig. 5 Enhancers and super-enhancers identified in various brain cell populations. Enhancers and super-enhancers identified in various brain cell populations.
Fig. 5 CD19-tPSMA(N9del) CAR T cell numbers in mouse and human.
Presentation transcript:

Fig. 2 Characterizing GLP1R signaling pathways and pharmacology activated by eGLP1-MALAT1-ASO (•) and eGLP1-FOXO1-ASO (▪) compared to eGLP1 peptide (○) and exenatide (ρ). Characterizing GLP1R signaling pathways and pharmacology activated by eGLP1-MALAT1-ASO (•) and eGLP1-FOXO1-ASO (▪) compared to eGLP1 peptide (○) and exenatide (ρ). (A) Displacement of 125I-GLP1 in membranes from GLP1R overexpressing HEK293. eGLP1-MALAT1-ASO (•) and eGLP1-FOXO1-ASO (▪) displaced 125I-GLP1 equally well as the eGLP1 peptide (○) and exenatide (ρ). Functional assays measuring G protein signaling by (B) DMR and (C) cAMP accumulation in GLP1R-HEK293 cells showed that eGLP1-MALAT1-ASO (•) and eGLP1-FOXO1-ASO (▪) were equally potent as the eGLP1 peptide (○) and exenatide (△), with only minor impact from conjugation of MALAT1-ASO and FOXO1-ASO to the eGLP1 peptide. (D) β-Arrestin2 recruitment in GLP1R-CHO-K1 and (E) receptor internalization in GLP1R-U2OS using PathHunter assays showed similar potencies for eGLP1, exenatide, and ASO-conjugated eGLP1, but with reduced maximal effect for both eGLP1-MALAT1-ASO (•) and eGLP1-FOXO1-ASO (▪). Data are presented as mean ± SEM using exenatide as reference for 100% effect. (F) Effect of 10 nM exenatide (ρ), eGLP1-Ctrl-ASO (x), FOXO1-ASO (□), eGLP1-FOXO1-ASO (▪), MALAT1-ASO (○), or eGLP1- MALAT1-ASO (•) on glucose GSIS in human reconstituted islet microtissues. Islets were treated with high glucose, and the compounds and insulin content were measured in the culture medium. Data were normalized to secretion at 11 mM glucose and presented as geometric mean ± 95% confidence interval (CI). Statistical analysis by one-way analysis of variance (ANOVA) adjusted for multiple comparisons. C. Ämmälä et al. Sci Adv 2018;4:eaat3386 Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).