(Photonics and Semiconductor Electronics)

Slides:



Advertisements
Similar presentations
Pentti Karioja, VTT Technical Research Centre of Finland
Advertisements

Anodic Aluminum Oxide.
LECTURE- 5 CONTENTS  PHOTOCONDUCTING MATERIALS  CONSTRUCTION OF PHOTOCONDUCTING MATERIALS  APPLICATIONS OF PHOTOCONDUCTING MATERIALS.
CH. 3 Solar Cell Basic III: Principle Organic Materials for Electronics and Photonics II.
MICROFLEX S Beeby, J Tudor, University of Southampton Introduction to MEMS What is MEMS? What do MEMS devices look like? What can they do? How do we make.
EBB 424E Lecture 4– LED 3 Dr Zainovia Lockman
Spring 2005ISAT 253 Transducers and Sensors I Friday, March 18, 2005.
Nanoscale Optics and Photonics
Semiconductor Light Detectors ISAT 300 Foundations of Instrumentation and Measurement D. J. Lawrence Spring 1999.
Semiconducting Light- Emitting Devices James A. Johnson 16 December 2006.
Department of Aeronautics and Astronautics NCKU Nano and MEMS Technology LAB. 1 Chapter I Introduction June 20, 2015June 20, 2015June 20, 2015.
Characterization of Detectors NEP= noise equivalent power = noise current (A/  Hz)/Radiant sensitivity (A/W) D = detectivity =  area/NEP IR cut-off maximum.
Microelectronics & Device Fabrication. Vacuum Tube Devices Thermionic valve Two (di) Electrodes (ode)
By: Garett henriksen 5/4/2015
Anti-reflection optical coatings Anti-reflection coatings are frequently used to reduce the Fresnel reflection. For normal incidence, the intensity reflection.
MSE-630 Gallium Arsenide Semiconductors. MSE-630 Overview Compound Semiconductor Materials Interest in GaAs Physical Properties Processing Methods Applications.
1 Introduction to Optoelectronic Devices Dr. Jing Bai Assistant Professor Department of Electrical and Computer Engineering University of Minnesota Duluth.
Chapter III Semiconductor Devices
Solar Cells 3 generations of solar cells:
Microchip Fabrication A Practical Guide to Semiconductor Processing 半導體製程 材料科學與工程研究所 張翼 教授.
ISAT 436 Micro-/Nanofabrication and Applications Photovoltaic Cells David J. Lawrence Spring 2004.
Light Emitting Diode Sumitesh Majumder.
Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes APPLIED PHYSICS LETTERS 101, (2012)
Chapter 4 Overview of Wafer Fabrication
Applications of Quantum Physics
Chapter 0: Introduction of this course Ching Yuan Su.
Importance of Materials Processing  All electronic devices & systems are made of materials in various combinations  Raw materials are far from the final.
Sensors I Lecture is based on material from Robotic Explorations: A Hands-on Introduction to Engineering, Fred Martin, Prentice Hall, 2001.
Heterostructures & Optoelectronic Devices
Modulators and Semiconductors ERIC MITCHELL. Acousto-Optic Modulators Based on the diffraction of light though means of sound waves travelling though.
LED Construction – Aim – 100% light emitting efficiency ◘Important consideration - radiative recombination must take place from the side of the junction.
Optoelectronics.
Part V. Solar Cells Introduction Basic Operation Mechanism
EE 4611 INTRODUCTION, 13 January 2016 Semiconductor Industry Milestones Very pure silicon and germanium were manufactured PN junction diodes.
Infrared IR Sensor Circuit Diagram and Working Principle.
1 Device Fabrication And Diffusion Overview 5 and 8 February 2016 Silicon Wafer Production-Refer to Chapter “0” Prologue Raw material ― Polysilicon nuggets.
Solar cell technology ‘ We are on the cusp of a new era of Energy Independence ‘
Introduction to microfabrication, chapter 1 Figures from: Franssila: Introduction to Microfabrication unless indicated otherwise.
Evaluation itemsPoints/10 Relevance to topics Clearness of introduction Background and theory Delivery of knowledge Presentation materials and handout.
MIT Amorphous Materials 11: Amorphous Silicon Macroelectronics
Evaluation of Polydimethlysiloxane (PDMS) as an adhesive for Mechanically Stacked Multi-Junction Solar Cells Ian Mathews Dept. of Electrical and Electronic.
Week 9 Emerging Technologies
LED & LCD SUKHNANDAN COLLEGE MUNGELI A PRESENTATION ON BY:
SEMICONDUCTOR DEVICE FABRICATION
• Very pure silicon and germanium were manufactured
Chapter 9. Optoelectronic device
ECE 695V: High-Speed Semiconductor Devices Peide (Peter) Ye Office: Birck Tel: Course website:
PN-junction diodes: Applications
Turkey’s First Chip Factory: AB MicroNano
UNDERGRADUATE COURSES USING THE SMU CLEAN ROOM
Prof. Jang-Ung Park (박장웅)
L ECE 4211 UConn F. Jain LED Design
L ECE 5212 Fall 2016 UConn F. Jain nd LED structures and material selection Blue LED with green and red phosphor layer to produce white light.
L ECE 5212 Fall 2016 UConn F. Jain nd LED structures and material selection Cont. L Blue LED with green and red phosphor layer to.
Semiconductor Devices and Optoelectronics
Interaction between Photons and Electrons
Modelling & Simulation of Semiconductor Devices
EE 4611 INTRODUCTION 21 January 2015 Semiconductor Industry Milestones
© 2016 Cengage Learning Engineering. All Rights Reserved.
Applications of Nanomaterials
OPTICAL PROPERTIES K L University Department of Physics.
L ECE 4243/6243 Fall 2016 UConn F. Jain Notes Chapter L8 (page ).
ECE699 – 004 Sensor Device Technology
Device Fabrication And Diffusion Overview
ECE 695V: High-Speed Semiconductor Devices Peide (Peter) Ye Office: Birck Tel: Course website:
UNIT-III Direct and Indirect gap materials &
IC Fabrication Overview Procedure of Silicon Wafer Production
• Very pure silicon and germanium were manufactured
Device Fabrication And Diffusion Overview
Chap. 6. Optical Properties
Presentation transcript:

(Photonics and Semiconductor Electronics) 光電與半導體電子 (Photonics and Semiconductor Electronics) 薛文証 教授 工程科學及海洋工程學系

Research Topics Photonics: Semiconductor Electronics: Liquid Crystal Display (LCD) Solar Cells Light Emitting Diode (LED) Metamaterials Near-Field Optics (Nano Optics) Photonic Crystals Semiconductor Junctions High Electron Mobility Transistor (HEMT) Heterojunction Bipolar Transistor (HBT) Nano Electronics Group III-V Semiconductor Devices Chapter 1.1.1 Introduction

LCD TV Chapter 1.1.1 Introduction

TFT LCD Display Chapter 1.1.1 Introduction

LCD Display Chapter 1.1.1 Introduction

Photovoltaic Cells (Solar Cells) Chapter 5.4 Magnetic sensors

Photovoltaic Cells (Solar Cells) a. Encapsulate b. Contact Grid c. The Antireflective Coating (AR Coating) d. N-Type Silicon e. P-Type Silicon f. Back Contact Chapter 5.4 Magnetic sensors

Application of LEDs Traffic/ Railway/ Marine/ Airport Runway Signaling Automotive Exterior/ Stop-Tail-Turn Signage/ Corporate Identity Portable Lighting/ Flashlights Landscape Lighting/ Bollards Architectural Detail/ Column/ Wall Wash LCD Back Lighting/ Edge-Lit Signs Chapter 1.1.1 Introduction Source : Lumileds

Evolution of LEDs Chapter 1.1.1 Introduction Source: OSRAM

White LEDs Efficiency 220 Lumin/Watt ?? Source: OSRAM Chapter 1.1.1 Introduction Source: OSRAM

Structure of White LEDs GaAs (Eg1.42 eV) is an absorbing sub. to the AlGaInP(Eg1.88 to 2.3 eV) LED structure. GaAs with poor thermal conductivity (44 W/mK) An increase in luminous efficiency can be achieved by the DBR method, but the DBR only reflects light of near-normal incidence. GaP window layer will limit the light extraction due to with high refraction index (n~3.3>>1 or epoxy 1.4~1.5) GaAs substrate 1 DBR Active Window 3 2 Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Development of Microelectronics 1948 The first transistor was invented. 1952 Shockly proposed field-effect transistor (FET). 1958 Integrated circuits (ICs) were developed. Chapter 1.1.1 Introduction

The resultant increase in the number of IC technology has developed rapidly during the past 45 years. The resultant decrease in the size of silicon processing device. (minimum: <100 nm) The resultant increase in the number of transistors contained within a single IC. (maximum: >1G) Chapter 1.1.1 Introduction

ENIAC computer in 1947 Fig. 1.1.1-1 (Van der Spiegel G2,p17 ) Chapter 1.1.1 Introduction

Miniaturized ENIAC computer ( produced in 1997) Chapter 1.1.1 Introduction Fig. 1.1.1-2 (Van der Spiegel et al.1998 G2,p18 )

Moore’s law for integrated circuits Double per 1.5 years Fig. 1.1.1-3 (T1,p2) Chapter 1.1.1 Introduction

Size reduction for DRAM Fig. 1.1.1-4 (Campbell 1996 T1,p2) Chapter 1.1.1 Introduction

Nanoelectronics Scaling Chapter 1.1.1 Introduction

Microoptical application (2/4) c. Waveguide principle 1.The indices of refraction of the surface layer and the substrate are different. 2.The light is guided along the fiber due to the total reflection within the glass interface 3.The layer structure SiO2/SiON/SiO2 can be used as a sensor element. Fig. 5.1.1-2 Waveguide in an optical microchip Chapter 5.1.1 Overview

Mach-Zehnder interferometer(1/2) 1. system consisting a. SiON waveguides b. Silicon membrane c. Photodiobes d. CMOS amplifier 2. chip size : 0.3mm x 5mm 3. membranes : 200µm x 200µm Fig. 5.1.2-9 Mach-Zehnder interferometer. According to [Fisch91] (G1 p_220) Chapter 5.1.2 Pressure sensors

Application of the Immuno sensors Principle: 1.The sensor detects the concentration of the antigens directly with an interferometric method 2.The light intensity changes are here due to the bonding process Fig. 5.7-2 Immuno-sensing using an optical transducer (G1-P252) Chapter 5.7 Biological sensors

The various materials used to cover the UV to IR range Fig. 5.3-4 some common semiconducting materials used in radiation microsensors and their dynamic range within the UV-to –IR spectrum (T1 p_243) Chapter 5.3 Radiation sensors

Photograph of photoconductive sensors CdS photoconductive sensor. ( Relatively large active area of 12mm and slow response time.) Fig. 5.3-2 example of radiation microsensors (T1 p_246) Chapter 5.3 Radiation sensors

Layout of a Hall effect magnetic microsensor (1/3) Fig. 5.4-4 Schematic layout of a Hall effect magnetic microsensor fabricated in (a) a bipolar IC process and (b) an nMOS IC process (T1 p.273) The layout of a substrate Hall plate sensor made from a bipolar process and a CMOS process. Chapter 5.4 Magnetic sensors

Fig. 1.2.2-1 Contaminant analyzer using an optical principle (Schomburg 1993 G1,p36) Chapter 1.2.2 environmental and biotechnology

Microspectrometer Fig. 1.2.2-2 (Schomburg 1993 G1,p36) Chapter 1.2.2 environmental and biotechnology

The Langmuir-Blodgett (LB) Film Fig. 2.3-2 microsensor using polymers. (g2.p266) Ferro, pyro, and piezoelectric polymer thin films Coating materials with controllable optical properties Microsensors (Chemical and Biomedical) 2.3 Ceramic, polymeric, and composite materials

END Fig. 1.3.2 (Gardner 1994 T1,p4) Chapter 1.3 Markets for microsystems

GaN HEMT http://www.ed-china.com/ART_8800016382_400001_500002_TS_46518aaf.HTM Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

HEMT HEMT Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

HEMT http://www.ed-china.com/ART_8800019585_400010_500003_TS_cdbda837.HTM Chapter 1.1.1 Introduction

HEMT http://news.soft32.com/fujitsu%E2%80%99s-technology-for-gallium-nitride-hemt_4558.html Chapter 1.1.1 Introduction

HEMT http://www.sinmat.com/technologies.php Chapter 1.1.1 Introduction

http://web.mit.edu/tpalacios/Research.htm Chapter 1.1.1 Introduction

HBT Chapter 1.1.1 Introduction http://users.ece.gatech.edu/~cressler/

http://taiwan. cnet. com/digilife/0,2000089053,20125995-20001643c,00 http://taiwan.cnet.com/digilife/0,2000089053,20125995-20001643c,00.htm Chapter 1.1.1 Introduction

HBT Chapter 1.1.1 Introduction

http://taiwan.cnet.com/digilife/0,2000089053,20125143,00.htm Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Single electron Transistor Chapter 1.1.1 Introduction http://nano.nchc.org.tw/dictionary/set.htm

Single electron Transistor Chapter 1.1.1 Introduction

Single electron Transistor Chapter 1.1.1 Introduction

http://psroc.phys.ntu.edu.tw/bimonth/v26/483.pdf Chapter 1.1.1 Introduction

Carbon nanotube Chapter 1.1.1 Introduction

http://gb-www. digitimes. com. tw/gate/gb/tech. digitimes. com http://gb-www.digitimes.com.tw/gate/gb/tech.digitimes.com.tw/-ifbase3-base20-U2hvd05ld3MuYXNweA~~?-base76-ekNhdElkPTE0MiZ6Tm90ZXNEb2NJZD1GMzJEOTFCMUZBQjczOEUxNDgyNTcxNjEwMDNFOUM0MQ~~ Chapter 1.1.1 Introduction

A semiconductor quantum well http://www.lanl.gov/orgs/pa/newsbulletin/2004/06/10/text02.shtml Chapter 1.1.1 Introduction

A semiconductor quantum well Chapter 1.1.1 Introduction http://www.ir-nova.se/tech/qwip.htm

https://spie.org/x8796.xml?highlight=x2408 Chapter 1.1.1 Introduction

http://www.asklight.com/article/Folder3/20070107/8535.Html Chapter 1.1.1 Introduction

http://www.asklight.com/article/Folder3/20070107/8535.Html Chapter 1.1.1 Introduction

http://www.asklight.com/article/Folder3/20070107/8535.Html Chapter 1.1.1 Introduction

http://pages.ief.u-psud.fr/QDgroup/modeling.html Chapter 1.1.1 Introduction

Semiconductor LASERS http://www.laserfocusworld.com/display_article/308742/12/none/none/Feat/SHORT-WAVE-DIODE-LASERS:-Nonpolar-gallium-nitride-laser-diodes-are-the-next-new-blu Chapter 1.1.1 Introduction

tunneling transistor http://www.allaboutcircuits.com/vol_3/chpt_2/14.html Chapter 1.1.1 Introduction

nano-techology http://google.brand.edgar-online.com/EFX_dll/EDGARpro.dll?FetchFilingHTML1?SessionID=gnd4WdQ6duMtVau&ID=4960887 Chapter 1.1.1 Introduction

Quantum compuer Chapter 1.1.1 Introduction

Quantum compuer Chapter 1.1.1 Introduction

Quantum compuer http://www.fastcursor.com/computers/quantum-computer-photo-gallery.asp Chapter 1.1.1 Introduction

quantum dot http://www.primidi.com/2005/02/12.html Chapter 1.1.1 Introduction

http://140.113.87.143/ymlab/software/tcad/tcad_overview.htm Chapter 1.1.1 Introduction

https://www.spie.org/x8882.xml?highlight=x2412 Chapter 1.1.1 Introduction

Quantum Well Infrared photo detector NASA Developing Infrared Camera For Use In Brain Surgery, Tumor Removal - Daisy Spangler Chapter 1.1.1 Introduction http://www.usmedicine.com/article.cfm?articleID=959&issueID=67

http://www.mtmi.vu.lt/pfk/funkc_dariniai/diod/led.htm Chapter 1.1.1 Introduction

Semiconductor laser http://www.mtmi.vu.lt/pfk/funkc_dariniai/diod/led.htm Chapter 1.1.1 Introduction

LASER http://www.mtmi.vu.lt/pfk/funkc_dariniai/diod/led.htm Chapter 1.1.1 Introduction

Group III-V Chapter 1.1.1 Introduction

Group III-V Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction

Chapter 1.1.1 Introduction