Large Ion Booster Re-design Update

Slides:



Advertisements
Similar presentations
June 14th 2005 Accelerator Division Overview of ALBA D. Einfeld Vacuum Workshop Barcelona, 12 th -13 th September 2005 General 10 th September 2005.
Advertisements

Update of 3.2 km ILC DR design (DMC3) Dou Wang, Jie Gao, Gang Xu, Yiwei Wang (IHEP) IWLC2010 Monday 18 October - Friday 22 October 2010 Geneva, Switzerland.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility EIC Collaboration Meeting, Hampton University, May 19-23,
Hybrid Synchrotron Arc: 2 Dipoles per Half Cell J. Scott Berg Advanced Accelerator Group Meeting 28 July 2011.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz Status and Plans for Linac and RLAs.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz IDS- NF Acceleration Meeting, Jefferson Lab,
FFAG Recirculation and Permanent Magnet Technology for ERL’s
J-PARC main ring lattice An overview
Progress on the Linac and RLAs
JLEIC simulations status April 3rd, 2017
Review of new High Energy Rings
PERLE - Current Accelerator Design
Large Booster and Collider Ring
Non-linear Beam Dynamics Studies for JLEIC Electron Collider Ring
‘Multi-pass-Droplet’ Experiment
Discussion on Emittance Evolution through FCC-e+e-
Status of Linac and RLAs – Simulations
Muon RLA - Design Status and Simulations
Muon RLA - Design Status and New Options
Electron Ring Optics Design
DA study for CEPC Main Ring
Specifications for the JLEIC IR Magnets
XII SuperB Project Workshop LAPP, Annecy, France, March 16-19, 2010
LHC (SSC) Byung Yunn CASA.
Progress on the Linac and RLAs
ILC 3.2 km DR design based on FODO lattice (DMC3)
Collider Ring Optics & Related Issues
ILC 3.2 km DR design based on FODO lattice (DMC3)
Optics ‘Scrapbook’ for ERL Test Facility
Optics and Layout of Alex Bogacz Workshop, Orsay, Feb. 23, 2017.
Accelerator and Interaction Region
N. Tsoupas, S. Brooks, A. Jain, G. Mahler, F. Meot, V. Ptitsyn, D
Low Emittance Lattices
Betatron Motion with Coupling of Horizontal and Vertical Degrees of Freedom – Part II Alex Bogacz USPAS, Hampton, VA, Jan , 2011.
S.A. Bogacz, G.A. Krafft, S. DeSilva and R. Gamage
Muon RLA - Design Status and New Options
– Overview Alex Bogacz JLAB, Aug. 14, 2017.
Update of lattice design for CEPC main ring
Alex Bogacz, Geoff Krafft and Timofey Zolkin
Towards an NMC Ring: Dispersion suppressor & long straight section
Muon RLA - Design Status and Simulations
Optics considerations for PS2
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
RHIC Magnets for JLEIC Yuhong Zhang May 11, 2018.
Progress on Non-linear Beam Dynamic Study
Feasibility of Reusing PEP-II Hardware for MEIC Electron Ring
Fanglei Lin, Andrew Hutton, Vasiliy S. Morozov, Yuhong Zhang
Feasibility of Recuperation of Magnets in Decommissioned Storage Rings
Main Design Parameters RHIC Magnets for MEIC Ion Collider Ring
Rough designs for The LEB and HEB for pCDR-100
The MEIC electron ring as the large ion booster
Ion Collider Ring Using Superferric Magnets
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Alternative Ion Injector Design
Fanglei Lin, Yuri Nosochkov Vasiliy Morozov, Yuhong Zhang, Guohui Wei
Update on JLEIC Electron Ring Design
Fanglei Lin MEIC R&D Meeting, JLab, July 16, 2015
JLEIC Collider Rings’ Geometry Options (II)
Progress Update on the Electron Polarization Study in the JLEIC
Alex Bogacz, Geoff Krafft and Timofey Zolkin
Possibility of MEIC Arc Cell Using PEP-II Dipole
JLEIC Electron Ring Nonlinear Dynamics Work Plan
Arc FODO Cell Inventory
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
MEIC R&D Meeting, JLab, August 20, 2014
MEIC Alternative Design Part III
A TME-like Lattice for DA Studies
Booster to Ion Ring Transfer Line
3.2 km FODO lattice for 10 Hz operation (DMC4)
PERLE - Current Accelerator Design
Presentation transcript:

Large Ion Booster Re-design Update Alex Bogacz August 7, 2014

Large Ion Booster - gt Ekin = 3 – 20 GeV g = 4.12 – 22.32 gt = 24 total ring circumference: ≈1420 m 60 deg. crossing Ekin = 3 – 20 GeV g = 4.12 – 22.32 gt = 24 August 7, 2014

Large Ion Booster - Footprint 2400 Arc: 13.20 + 213.60 + 13.20 13.20 213.60 Electron Ring Arc bend: 213.60 Cell length: 18.85 m Number of cells: 18 Spin rotators: 2x13.20 Ion Booster Ring Arc bend: 213.60 Cell length: 12.12 m Number of inner cells: 28 = 7x4 Number of outer cells: 2x4 bend/inner cell: 7.630 bend/outer cell: 3.30 August 7, 2014

Periodic 900-FODO Cell E = 20 GeV phase adv/cell: Dfx,y= 900 12.12 30 2 -2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 12.12 90 PHASE_X&Y [deg] Q_X Q_Y phase adv/cell: Dfx,y= 900 Drifts : 4x130 cm Arc Dipole: Lb = 300 cm B = 1.55 Tesla bend ang. = 3.814 deg. Arc Quadrupoles: Lq = 45 cm GF = 37.1 Tesla/m GD = -36.9 Tesla/m August 7, 2014

Perturbed 900-FODO 4 x FODO DGF = 0.2 x GF M56 = 14.5 cm ⇨ gt = 24.0 Dfx,y = 1800 48.4759 60 2.2 -2.2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y M56 = 39.6 cm ⇨ gt = 14.5 4 x FODO (4 x 900 = 3600) DGF = 0.2 x GF 48.4759 60 2.2 -2.2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y M56 = 21.6 cm ⇨ gt = 19.6 August 7, 2014

Perturbed 900-FODO 4 x FODO DGF = 0.36 x GF M56 = 14.5 cm ⇨ gt = 24.0 Dfx,y = 1800 48.4759 60 2.2 -2.2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y M56 = 39.6 cm ⇨ gt = 14.5 4 x FODO (4 x 900 = 3600) DGF = 0.36 x GF 48.4759 60 2.2 -2.2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y M56 = 14.4 cm ⇨ gt = 24.2 August 7, 2014

Super-Cell Based on 900-FODO 48.4759 60 2 -2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y Tunes: Qx ≈1.3, Qy ≈ 0.6 DQx ≈ 0.5 DQy ≈ 0.5 QF0 QD1 QF1 QD0 Chromaticity: xx = -2.24 xy = -1.45 Super-Cell Quads: Lq = 45 cm GF0 = 38.9 T/m GD0 = -33.4 T/m GF1 = 53.7T/m GD1 = -28.7 T/m 900- FODO Quads: Lq = 45 cm GF = 37.1 T/m GD = -36.9 T/m Lq = 60 cm GF1 = 40.2 T/m Lq = 30 cm GF1 = 40.2 T/m 2 x August 7, 2014

‘Dressed’ Super-Cell August 7, 2014 QD0 Sext2 QF1 Sext1 QD1 QF0 QD1 60 2 BETA_X&Y[m] DISP_X&Y[m] -2 BETA_X BETA_Y DISP_X DISP_Y 48.4759 QD0 Sext2 QF1 Sext1 QD1 QF0 QD1 QF1 Sext1 QD0 Sext2 QF0 August 7, 2014

Super-Cell Beam Envelope at 10s QF0 QD1 QF1 QD0 48.47593 2.5 Size_X[cm] Size_Y[cm] Ax_bet Ay_bet Ax_disp Ay_disp E = 3 GeV x,y = 49 m g = 4.1 eN_rms = 4 mm mrad sx,y = 2 mm bore radius: 25 mm Quad grad: 40 T/m Pole tip field: 1 T August 7, 2014

‘Inner/Outer’ Super-Cells Inner Super-Cell (dipole bend ang. = 3.8140) Outer Super-Cell (dipole bend ang. = 1.650) 48.4759 60 2 -2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X 48.4723 60 2 -2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X short bends: 150 cm August 7, 2014

Inner Arc: 7 x Inner S-Cell 2400 Arc Optics 60 BETA_X&Y[m] Outer S-Cell 13.20 2 -2 DISP_X&Y[m] Outer S-Cell 13.20 BETA_X BETA_Y DISP_X Inner Arc: 7 x Inner S-Cell 213.60 August 7, 2014

Arc-to-Straight FODO Arc Straight Quads: Lq = 40 cm GF = 20.6 T/m 518 240 60 2 -2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y Arc Straight 24.2392 60 5 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y Quads: Lq = 40 cm GF = 20.6 T/m GD = - 20.6 T/m August 7, 2014

Summary – Magnet count Segment Magnet Number Length [cm] Strength Arcs bend1 112 300 1.5 Tesla bend2 32 0.7 Tesla quad1 106 45 20-40 T/m quad2 72 30 42 T/m sextupole 15 Straights quad 48 26-43 T/m August 7, 2014