Information Storage and Spintronics 18

Slides:



Advertisements
Similar presentations
Department of Electronics Nanoelectronics 03 Atsufumi Hirohata 17:00 17/January/2014 Friday (P/L 001)
Advertisements

New Directions in Energy Research or a Magnetic Quirk?
Topics in Condensed Matter Physics Lecture Course for graduate students CFIF/Dep. Física Spin-dependent transport theory Vitalii Dugaev Winter semester:
Introductory Nanotechnology ~ Basic Condensed Matter Physics ~
Superconducting Quantum Interference Device SQUID C. P. Sun Department of Physics National Sun Yat Sen University.
Spin transport in spin-orbit coupled bands
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
Optical study of Spintronics in III-V semiconductors
Experimental observation of the Spin-Hall Effect in InGaN/GaN superlattices Student : Hsiu-Ju, Chang Advisor : Yang Fang, Chen.
1 Motivation: Embracing Quantum Mechanics Feature Size Transistor Density Chip Size Transistors/Chip Clock Frequency Power Dissipation Fab Cost WW IC Revenue.
The spinning computer era Spintronics Hsiu-Hau Lin National Tsing-Hua Univ.
Properties and Fabricating Technique of Tunneling Magnetoresistance Reporter : Kuo-Ming Wu Day : 2006/04/08.
Magnetoresistive Random Access Memory (MRAM)
Spintronic Devices and Spin Physics in Bulk Semiconductors Marta Luengo-Kovac June 10, 2015.
Department of Electronics Nanoelectronics 11 Atsufumi Hirohata 12:00 Wednesday, 18/February/2015 (P/L 006)
Department of Electronics Nanoelectronics 18 Atsufumi Hirohata 12:00 Wednesday, 11/March/2015 (P/L 006)
Wave Nature of Light and Quantum Theory
Dissipationless quantum spin current at room temperature Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University.
AN INTRODUCTION TO SPINTRONICS
Lecture 2 Magnetic Field: Classical Mechanics Magnetism: Landau levels Aharonov-Bohm effect Magneto-translations Josep Planelles.
Spintronics Tomas Jungwirth University of Nottingham Institute of Physics ASCR, Prague.
Charge Carrier Related Nonlinearities
Magnetoresistive Random Access Memory (MRAM)
Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.
Observation of the spin-Hall Effect Soichiro Sasaki Suzuki-Kusakabe Lab. Graduate School of Engineering Science Osaka University M1 Colloquium.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
J. Brooks, Florida State University, NSF DMR Making “plastics” do new things: Designer molecular crystals can: 2) be metals even without “doping”
 Ferromagnetism  Inhomogenous magnetization  Magnetic vortices  Dynamics  Spin transport Magnetism on the Move US-Spain Workshop on Nanomaterials.
Ferromagnetic Quantum Dots on Semiconductor Nanowires
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
Introduction to Spintronics
Introduction to materials physics #4
Nano and Giga Challenges in Microelectronics, Cracow, 2004 Spin Injection in Semiconductor Nanostructures Alexey Toropov Ioffe Institute, St.Petersburg,
G. Kioseoglou SEMICONDUCTOR SPINTRONICS George Kioseoglou Materials Science and Technology, University of Crete Spin as new degree of freedom in quantum.
Universität Karlsruhe Phys. Rev. Lett. 97, (2006)
Atomic Physics Quantum Physics 2002 Recommended Reading: Harris Chapter 7.
Conclusion QDs embedded in micropillars are fabricated by MOCVD and FIB post milling processes with the final quality factor about Coupling of single.
Thin Film Magnetism Group, Cavendish Laboratory, University of Cambridge W. S. Cho and J. A. C. Bland Cavendish Laboratory, University of Cambridge, UK.
Electromagnetic interactions in a pair of coupled split ring resonators S. Seetharaman, I. R. Hooper, W. L. Barnes Department of Physics & Astronomy, University.
Department of Electronics
Yu-Sheng Ou, PhD Ezekiel Johnston-Halperin’s group
Department of Electronics
Raman Effect The Scattering of electromagnetic radiation by matter with a change of frequency.
Department of Electronics
Tunable excitons in gated graphene systems
Department of Electronics
Magnetization dynamics in dipolar chromium BECs
Department of Electronics
Magnetoresistive Random Access Memory (MRAM)
MRSEC at the University of Utah;
Department of Electronics
Department of Electronics
Qian Niu 牛谦 University of Texas at Austin 北京大学
EE 315/ECE 451 Nanoelectronics I
GDR-Physique Quantique Mésoscopique, 8-11 Décembre 2008
Hyperfine interaction studies in Manganites
Zeeman effect HFS and isotope shift
Lecture 2:
Lasers and effects of magnetic field
Review of semiconductor physics
Presented by: Bc. Roman Hollý
The Free Electron Fermi Gas
Compact Modeling of MTJs for use in STT-MRAM
Motivation Oscillatory magnetic anisotropy originating from
Persistent spin current
How do spins interact with
ECEN5341/4341 Spring 2019 Lecture 2 January 16,2019.
PHY 741 Quantum Mechanics 12-12:50 AM MWF Olin 103
Advanced Pharmaceutical Analysis
P. He1,4, X. Ma2, J. W. Zhang4, H. B. Zhao2,3, G. Lupke2, Z
Presentation transcript:

Information Storage and Spintronics 18 Atsufumi Hirohata Department of Electronic Engineering 15:00 Tuesday, 03/December/2019 (P/L 006)

Quick Review over the Last Lecture Family of Hall effects : * ( ) ( ) ( ) ( ) ( ) ( ) * C.-Z. Chang and M. Li, J. Phys.: Condens. Matter 28, 123002 (2016).

18 Other Spintronic Devices Spin caloritronics Berry’s phase Spin mechatronics Zeeman splitting Spin optics

Vertical devices Spins h Spin injection from a ferromagnet Magnetic field application Spins Electric field application h Thermal gradient introduction Electromagnetic wave introduction

Spin Seebeck Effect * K. Uchida et al., Nature 455, 778 (2008); ** K Uchida et al.,  J. Phys.: Condens. Matter 26, 343202 (2014).

Spin Seebeck Effect * K. Uchida et al., Nature Mater. 9, 894 (2010).

Vertical devices Spins h Spin injection from a ferromagnet Magnetic field application Spins Electric field application Berry phase h Thermal gradient introduction Electromagnetic wave introduction

Theoretical Prediction on a Persistent Current induced by a magnetic flux threading a mesoscopic ring  Aharonov-Bohm effect * The persistent current oscillates with the flux. induced by a magnetic field rotating slowly in time **  Berry (geometrical) phase Non-uniform external magnetic fields are required. Spin-polarised persistent current can be generated. * Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959); A. Tonomura et al., Phys. Rev. Lett. 56, 792 (1986); ** D. Loss and P. M. Goldbart, Phys. Rev. B 45, 13544 (1992).

Vertical devices Spins h Spin injection from a ferromagnet Mechanical rotation Magnetic field application Spins Electric field application Berry phase h Thermal gradient introduction Electromagnetic wave introduction

Spin Current in a Rotating Body The Einstein de Haas effect describes the rotation of a magnetised body due to the conservation of angular momentum, by the application of a magnetic field.* The Barnett effect describes the inverse effect, where a body exhibits an increased magnetisation due to mechanical rotation.** The coupling between rotation and magnetisation and magnetisation and spin currents is well established. In 2011 Matsuo et al. proposed a new method for the direct generation of a spin current via mechanical rotation.*** JS = spin current density e = electron charge n = electron density R = radius of rotation ηSO = spin orbit coupling strength, 0.59 f = frequency εF = Fermi energy ωC = qB/m for electron wave packet * A. Einstein and W. J. de Haas, KNAW Proc. 18, 696 (1915); ** S. J. Barnett, Phys. Rev. 6, 239 (1915); *** M. Matsuo et al., Phys. Rev. Lett. 106, 076601 (2011).

Spin Mechatronics Measurement In a similar vein, one can observe the Barnett field in a rotating body observing a shift in the NMR. The nuclear g factor dependence of the NMR shift is observed to measure the Barnett field.* The presence of a spin current may be detected by the magneto-optical Kerr effect (MOKE). This allows for direct probing of the conduction electrons. Schematic of the NMR measurement setup for the Barnett effect [6] * H. Chudo et al., Appl. Phys. Exp. 7, 063004 (2014).

Vertical devices Spins h Spin injection from a ferromagnet Mechanical rotation Magnetic field application Spins Electric field application Berry phase h Thermal gradient introduction Electromagnetic wave introduction Zeeman splitting

Spin Transport - Spin-pol'd electrons / holes  SC  Circ Spin Transport - Spin-pol'd electrons / holes  SC  Circ.-pol'd photons Spin LED structures : Structures Spin polarisation Refs. Spin-polarised electron injection : 300 nm BeMgZnSe + BeMnZnSe / 100 nm n-AlGaAs / 15 nm i-GaAs QW / … / p-GaAs ~ 42% @ <5 K R. Fiederling et al., Nature 402, 787 (1999). 360 nm CdMnTe / 1400 nm CdTe ~ 30% @ 5 K M. Oestreich et al., Appl. Phys. Lett. 74, 1251 (1999). n-ZnMnSe / AlGaAs / 10-15 nm GaAs QW / AlGaAs ~ 83% @ 4.5 K B. T. Jonker et al., Phys. Rev. B 62, 8180 (2000); Appl. Phys. Lett. 81, 265 (2002). 20 nm Fe / GaAs / InGaAs QW / GaAs ~ 2% @ 25 K H. J. Zhu et al., Phys. Rev. Lett. 87, 016601 (2001). 12.5 nm Fe / AlGaAs / GaAs QW / GaAs ~ 13% @ 4.5 K ~ 8% @ 240 K A. T. Hanbicki et al., Appl. Phys. Lett. 80, 1240 (2002). 8 nm NiFe + 2 nm CoFe / 1.4 nm AlOx / 15 nm AlGaAs / 100 nm GaAs QW / GaAs >9.2% @ 80 K V. F. Motsnyi et al., Appl. Phys. Lett. 81, 265 (2002). 20 nm (Co, Fe & NiFe) / 2 nm Al2O3 / 50 nm n-AlGaAs / 50 nm si-AlGaAs / 20 nm si-GaAs QW / … / GaAs 0.8%, 0.5% & 0.2% @ RT T. Manago et al., Appl. Phys. Lett. 81, 694 (2002). Spin-polarised hole injection : 300 nm p-GaMnAs / 20-220 nm GaAs / 10 nm InGaAs QW ~ 1% @ <31 K Y. Ohno et al., Nature 402, 790 (1999).

Optically-Induced Spin-Polarised Electrons Photoexcitation : Electrons spin-polarised by introducing circularly polarised light Circularly polarised electroluminescence (EL) : Circularly polarised light generated by spin-polarised electrons at a quantum well (QW)

Photon Energy Dependence Eg Eg +  NiFe / GaAs (100) at room temperature 40 40 p = 10 25 m -3 Asymmetry [%] 20 20 Polarisation [%] 1.5 2.0 2.5 n = 10 23 m -3 Photon Energy [eV] Spin polarisation  asymmetry in spin transport effect : A = ( I n - I 0 ) / ( I n + I 0 ) A decreases with increasing photon energy.  spin polarisation in GaAs n = 10 24 m -3 * D. T. Pierce et al., Phys. Lett. 51A, 465 (1975); A.Hirohata et al., Phys. Rev. B 63, 104425 (2001).

Spin Electronics with Optical Methods Spin-polarised inverse photoemission Spin-polarised STM Photoexcitation Spin-polarised LED * A. Hirohata, "Optically induced and detected spin current,” in S. Maekawa et al. (Eds.) Spin Current (Oxford University Press, Oxford, 2012) pp. 49-64.

Quick Review over the Last Lecture Vertical devices Quick Review over the Last Lecture Spin injection from a ferromagnet Mechanical rotation Magnetic field application Lateral Devices Spins Vertical Devices Electric field application Berry phase h Thermal gradient introduction Electromagnetic wave introduction Zeeman splitting

Spin moment Stray field HDD read head Magnetic tagging Spin-torque oscillator Ferrofluid Magnetic hyperthermia MRAM Magnetic sensor Racetrack memory TMR GMR Lateral spin-valve HDD write head 1D 0D Spin-orbit 1D Spin Seebeck 2D 2D Spin Hall 3D 3D Recording media Spin transistor Electromagnetic shield Permanent magnet Electromagnetic generator Electromagnetic motor Spin moment Stray field

Spintonics Studies in the World Spintronics is one of the most exciting subject in nano-electronics : Spin Dynamics Spin Accumulation Spin Transfer Spin Operation Spin Engineering Theoretical Studies