Fig. 3 Characterization of the luminescence temporal time traces.

Slides:



Advertisements
Similar presentations
Fig. 5 Correlation of RNA expression and protein abundance.
Advertisements

Fig. 2 Transport properties of a BP transistor at low temperature.
Fig. 2 Global production, use, and fate of polymer resins, synthetic fibers, and additives (1950 to 2015; in million metric tons). Global production, use,
Fig. 3 Oil, gas, and FP water variations with time.
Fig. 5 Thermal conductivity of n-type ZrCoBi-based half-Heuslers.
Fig. 1 Map of water stress and shale plays.
Fig. 1 Crystal and electronic structure of WTe2.
Fig. 1 Examples of experimental stimuli and behavioral performance.
Fig. 3 Electron PSD in various regions.
Fig. 4 Resynthesized complex boronic acid derivatives based on different scaffolds on a millimole scale and corresponding yields. Resynthesized complex.
Fig. 6 Comparison of properties of water models.
Fig. 1 Mean and median RCR (Relative Citation Ratio) of Roadmap Epigenomics Program research articles for each year. Mean and median RCR (Relative Citation.
Fig. 2 Influence of the Roadmap Epigenomics Program on the field of epigenomics research. Influence of the Roadmap Epigenomics Program on the field of.
Fig. 2 Ferroelectric domains resolved in WTe2 single crystals.
Fig. 5 Conservation of m6A in mammals.
Fig. 3 Glucose- and structure-dependent insulin release.
Fig. 3 Scan rate effects on the layer edge current.
Fig. 2 Stratigraphic profile of the Area 15 excavation block showing the diagnostic cultural materials and components alongside the stratigraphic sequence.
Fig. 3 Rotation experiment, setup.
Fig. 1 Product lifetime distributions for the eight industrial use sectors plotted as log-normal probability distribution functions (PDF). Product lifetime.
Fig. 3 Gate voltage dependence of the areal iDMI and PMA.
Fig. 3 Phase-contrast imaging.
Fig. 1 Distribution of total and fake news shares.
Fig. 3 Characteristics of UV and temperature sensors.
Fig. 2 2D QWs of different propagation lengths.
Fig. 2 Configuration and composition of urban green space.
Fig. 5 Molecular dynamics simulations of Rac1.
Fig. 4 EUV TG signal from Si.
The changes in the water intensity of hydraulic fracturing with time
Fig. 3 Load dependence of friction force and corresponding COF.
Fig. 3 ET dynamics on the control and treatment watersheds during the pretreatment and treatment periods. ET dynamics on the control and treatment watersheds.
Fig. 1 Histograms of the number of first messages received by men and women in each of our four cities. Histograms of the number of first messages received.
Fig. 5 Schematic phase diagrams of Ising spin systems and Mott transition systems. Schematic phase diagrams of Ising spin systems and Mott transition systems.
Fig. 4 OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with different pH. OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with.
Fig. 1 Average contribution (million metric tons) of seafood-producing sectors, 2009–2014. Average contribution (million metric tons) of seafood-producing.
Fig. 3 GIWAXS pattern of perovskite films with varied ligands.
Fig. 3 Collective modes of charge order in LBCO propagate diffusively.
Fig. 4 The mechanical performances of thermally stable click-ionogels.
Fig. 4 Evolution of fraction of sickled RBCs under hypoxia.
Fig. 2 Magnetic properties of FGT/Pt bilayer.
Fig. 3 Production of protein and Fe(II) at the end of growth correlated with increasing concentrations of ferrihydrite in the media that contained 0.2.
Fig. 2 Schematic drawings of Göbekli Tepe skulls.
Fig. 2 NH3, NOx, SO2, and NMVOC emission changes triggered by the JJJ clean air policy. NH3, NOx, SO2, and NMVOC emission changes triggered by the JJJ.
Fig. 1 Size fractions of MPPs in different fertilizers.
Fig. 4 Schematic diagram for achieving URTP in G-doped PVA films and irradiation time-dependent 1H NMR spectra of the PVA-100-3mg film. Schematic diagram.
Fig. 5 Global patterns in total fisheries catches from over more than 50 years as seen in three example stanzas. Global patterns in total fisheries catches.
Fig. 5 Comparison of the liquid products generated from photocatalytic CO2 reduction reactions (CO2RR) and CO reduction reactions (CORR) on two catalysts.
Fig. 1 Global distribution of surface DIP.
Fig. 1 The calculation of STF moment acceleration, using the 2010 Maule, Chile M8.8 earthquake as an example. The calculation of STF moment acceleration,
Fig. 3 Transition of adiabatic driving from the standard continuous protocol to the jumping protocol. Transition of adiabatic driving from the standard.
Fig. 1 Location of the Jirzankal Cemetery.
Fig. 4 CO2 emission changes triggered by the JJJ clean air policy.
Fig. 3 Information storage substates.
Fig. 3 Comparisons of NDVI trends over the globally vegetated areas from 1982 to Comparisons of NDVI trends over the globally vegetated areas from.
Fig. 1 Schematic depiction of a paradigm for rapid and guided discovery of materials through iterative combination of ML with HiTp experimentation. Schematic.
Fig. 2 In situ extraction of miRNAs using the nanowire-anchored microfluidic device. In situ extraction of miRNAs using the nanowire-anchored microfluidic.
Fig. 4 Mapping of abundance of the most dominant bacterial and archaeal phyla across France. Mapping of abundance of the most dominant bacterial and archaeal.
Fig. 4 Spatial mapping of the distribution and intensity of industrial fishing catch. Spatial mapping of the distribution and intensity of industrial fishing.
Fig. 4 Single-particle contact angle measurements.
Fig. 4 Changes in amount of atmospheric aerosol and of solar energy at Earth’s surface after nuclear exchange. Changes in amount of atmospheric aerosol.
Fig. 3 Supraballs and films assembled from binary 219/217nm SPs/SMPs.
Fig. 2 Supraballs and films from binary SPs.
Fig. 3 Performance of the generative model G, with and without stack-augmented memory. Performance of the generative model G, with and without stack-augmented.
Fig. 2 Simulation modeling of the excitonic photophysical processes generating the luminescence. Simulation modeling of the excitonic photophysical processes.
Fig. 4 Behavior of resistance peak near density nm = 5.
Fig. 2 Comparison between the different reflective metasurface proposals when θi = 0° and θr = 70°. Comparison between the different reflective metasurface.
Fig. 1 A conceptual model for mental health as an ecosystem service.
Fig. 4 Evolution of rate constants over varying interaction strengths.
Fig. 3 Calculated electronic structure of ZrCoBi.
Fig. 3 Temperature-dependent heat capacity of YbTM2Zn20.
Presentation transcript:

Fig. 3 Characterization of the luminescence temporal time traces. Characterization of the luminescence temporal time traces. (A) Graph showing the influence of the ratio φ = aMC/aSP for tMC = 50 s and ld = 180 nm on the ratio of the average luminescence intensities before and during the UV irradiation. The gray shaded area corresponds to the error on the estimation of φ for L = 300 ± 50 nm. (B) Examples of temporal ACFs for the time traces presented in Fig. 2 (C and D) for φ = 100 with varying tSP and for tMC = 50 s with varying φ. (C) Graph summarizing the impact of varying φ and tSP on the temporal autocorrelation decay constant. For Fig. 3 (A to C), L = 300 nm, ld = 180 nm, and NSM = 1 per nm. (D) Graph summarizing the impact of varying φ and tSP on the temporal autocorrelation decay constant plotted versus tcind=(tSP•tMC)/(tSP+tMC). The slope tc=slope•tcind is also shown in the inset as a function of φ. Values correspond to mean ± SD. Antoine G. Godin et al. Sci Adv 2019;5:eaax1166 Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).