Chapter 5: Link Layer 5.1 Introduction and services

Slides:



Advertisements
Similar presentations
CPSC Network Layer4-1 IP addresses: how to get one? Q: How does a host get IP address? r hard-coded by system admin in a file m Windows: control-panel->network->configuration-
Advertisements

Communication Networks ( ) / Spring 2011 The Blavatnik School of Computer Science, Tel-Aviv University Allon Wagner.
Review r Error Detection: CRC r Multiple access protocols m Slotted ALOHA m CSMA/CD r Homework 3 out r Project 3 out, link state only. Some slides are.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Internet Control Protocols Savera Tanwir. Internet Control Protocols ICMP ARP RARP DHCP.
8-1 Last time □ Network layer ♦ Introduction forwarding vs. routing ♦ Virtual circuit vs. datagram details connection setup, teardown VC# switching forwarding.
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
IP Address 1. 2 Network layer r Network layer protocols in every host, router r Router examines IP address field in all IP datagrams passing through it.
IP Addressing: introduction
ICMP: Internet Control Message Protocol used by hosts, routers, gateways to communication network-level information –error reporting: unreachable host,
IP Address 1. 2 Network layer r Network layer protocols in every host, router r Router examines IP address field in all IP datagrams passing through it.
MAC Addresses and ARP 32-bit IP address: –network-layer address –used to get datagram to destination IP subnet MAC (or LAN or physical or Ethernet) address:
CSE452:Computer Networks
16 – CSMA/CD - ARP Network Layer4-1. 5: DataLink Layer5-2 CSMA (Carrier Sense Multiple Access) CSMA: listen before transmit: If channel sensed idle: transmit.
Network Layer4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side,
IP Address 0 network host 10 network host 110 networkhost 1110 multicast address A B C D class to to
Network Layer4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side,
21.1 Chapter 21 Network Layer: Address Mapping, Error Reporting, and Multicasting Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction.
DHCP: Dynamic Host Configuration Protocol
Introduction1-1 Data Communications and Computer Networks Chapter 5 CS 3830 Lecture 26 Omar Meqdadi Department of Computer Science and Software Engineering.
Network LayerII-1 RSC Part II: Network Layer 4. IP in operation Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are,
Network LayerII-1 RSC Part II: Network Layer 3. IP addressing (2nd part) Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides.
5: DataLink Layer5-1 LAN technologies Data link layer so far: m services, error detection/correction, multiple access Next: LAN technologies m addressing.
Datagram Networks: Internet Protocol (IPv4)
Network Layer4-1 DHCP: Dynamic Host Configuration Protocol Goal: allow host to dynamically obtain its IP address from network server when it joins network.
Objectives: Chapter 5: Network/Internet Layer  How Networks are connected Network/Internet Layer Routed Protocols Routing Protocols Autonomous Systems.
Link Layer 5-1 Link layer, LAN s: outline 5.1 introduction, services 5.2 error detection, correction 5.3 multiple access protocols 5.4 LANs  addressing,
Transport Layer 3-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012  CPSC.
NUS.SOC.CS2105 Ooi Wei Tsang Application Transport Network Link Physical you are here.
CIS 3360: Internet: Network Layer Introduction Cliff Zou Spring 2012.
Network Layer4-1 Subnets How many?
1 Chapter 4: Network Layer r 4.4 IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r 4.5 Routing algorithms m Hierarchical routing.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
5: Link Layer Part Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer.
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
Network Layer4-1 The Internet Network layer forwarding table Host, router network layer functions: Routing protocols path selection RIP, OSPF, BGP IP protocol.
Lectu re 1 Recap: “Operational” view of Internet r Internet: “network of networks” m Requires sending, receiving of messages r protocols control sending,
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
Internet Protocols. ICMP ICMP – Internet Control Message Protocol Each ICMP message is encapsulated in an IP packet – Treated like any other datagram,
EEC-484/584 Computer Networks Lecture 14 Wenbing Zhao
The Internet Network layer
Net5: ARP 協定 授課教師:雲林科技大學 張慶龍 老師. IP Address/Physical Address Static Mapping  IP broadcast address maps to Ethernet broadcast address  IP Multicast Address.
Network Layer by peterl. forwarding table routing protocols path selection RIP, OSPF, BGP IP protocol addressing conventions datagram format packet handling.
Network Layer4-1 Chapter 4 Network Layer All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down.
5: DataLink Layer5-1 Chapter 5: The Data Link Layer Our goals: r understand principles behind data link layer services: m error detection, correction m.
CSEN 404 Data Link Layer Amr El Mougy Lamia AlBadrawy.
4: DataLink Layer1 LAN technologies Data link layer so far: m services, error detection/correction, multiple access Next: LAN technologies m addressing.
CPSC 441: Link Layer1 Link Layer Addressing Slides originally from Carey Williamson Notes derived from “ Computer Networking: A Top Down Approach”, by.
Introduction to Networks
NAT – Network Address Translation
Address Resolution Protocol (ARP)
Chapter 4: Network Layer
Chapter 4: Network Layer
Link Layer 5.1 Introduction and services
CS4470 Computer Networking Protocols
Course Review 2015 Computer networks 赵振刚
MAC Addresses and ARP 32-bit IP address:
ICMP ICMP – Internet Control Message Protocol
CS 5565 Network Architecture and Protocols
University of Pittsburgh
ARP: Address Resolution Protocol
IP Forwarding Relates to Lab 3.
Address Resolution Protocol (ARP)
Introduction to Networks
Chapter 6 The Data Link layer
Some slides have been taken from:
Wide Area Networks and Internet CT1403
IP Forwarding Relates to Lab 3.
DHCP and NAT.
DHCP: Dynamic Host Configuration Protocol
Presentation transcript:

Chapter 5: Link Layer 5.1 Introduction and services 5.2 Error detection and correction 5.3Multiple access protocols 5.4 Link-Layer Addressing (ARP) 5.5 Ethernet 5.6 Link-layer switches 5.7 PPP 5.8 Link Virtualization: ATM, MPLS 5: DataLink Layer

ARP: Address Resolution Protocol Question: how to determine MAC address of B knowing B’s IP address? Each IP node (host, router) on LAN has ARP table ARP table: IP/MAC address mappings for some LAN nodes < IP address; MAC address; TTL> TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min) 137.196.7.78 1A-2F-BB-76-09-AD 137.196.7.23 137.196.7.14 LAN 71-65-F7-2B-08-53 58-23-D7-FA-20-B0 0C-C4-11-6F-E3-98 137.196.7.88 5: DataLink Layer

ARP protocol: Same LAN (network) A wants to send datagram to B, and B’s MAC address not in A’s ARP table. A broadcasts ARP query packet, containing B's IP address dest MAC address = FF-FF-FF-FF-FF-FF all machines on LAN receive ARP query B receives ARP packet, replies to A with its (B's) MAC address frame sent to A’s MAC address (unicast) A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state: information that times out (goes away) unless refreshed ARP is “plug-and-play”: nodes create their ARP tables without intervention from net administrator 5: DataLink Layer

Addressing: routing to another LAN walkthrough: send datagram from A to B via R assume A knows B’s IP address two ARP tables in router R, one for each IP network (LAN) R 1A-23-F9-CD-06-9B 222.222.222.220 111.111.111.110 E6-E9-00-17-BB-4B CC-49-DE-D0-AB-7D 111.111.111.112 111.111.111.111 A 74-29-9C-E8-FF-55 222.222.222.221 88-B2-2F-54-1A-0F B 222.222.222.222 49-BD-D2-C7-56-2A 5: DataLink Layer

R A creates IP datagram with source A, destination B A uses ARP to get R’s MAC address for 111.111.111.110 A creates link-layer frame with R's MAC address as dest, frame contains A-to-B IP datagram A’s NIC sends frame R’s NIC receives frame R removes IP datagram from Ethernet frame, sees its destined to B R uses ARP to get B’s MAC address R creates frame containing A-to-B IP datagram sends to B This is a really important example – make sure you understand! R 1A-23-F9-CD-06-9B 222.222.222.220 111.111.111.110 E6-E9-00-17-BB-4B CC-49-DE-D0-AB-7D 111.111.111.112 111.111.111.111 A 74-29-9C-E8-FF-55 222.222.222.221 88-B2-2F-54-1A-0F B 222.222.222.222 49-BD-D2-C7-56-2A 5: DataLink Layer

Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing (DHCP) ICMP IPv6 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing 5: DataLink Layer

DHCP: Dynamic Host Configuration Protocol Goal: allow host to dynamically obtain its IP address from network server when joining network support for mobile users joining network host holds address only while connected and “on” (allowing address reuse) renew address already in use DHCP overview: 1. host broadcasts “DHCP discover” msg 2. DHCP server responds with “DHCP offer” msg 3. host requests IP address: “DHCP request” msg 4. DHCP server sends address: “DHCP ack” msg 5: DataLink Layer

DHCP client-server scenario 223.1.2.1 223.1.1.1 server 223.1.1.2 223.1.1.4 223.1.2.9 B 223.1.2.2 arriving DHCP client needs address in this (223.1.2/24) network E 223.1.1.3 223.1.3.27 223.1.3.1 223.1.3.2 5: DataLink Layer

DHCP client-server scenario DHCP server: 223.1.2.5 arriving client DHCP discover src : 0.0.0.0, 68 dest.: 255.255.255.255,67 yiaddr: 0.0.0.0 transaction ID: 654 DHCP offer src: 223.1.2.5, 67 dest: 255.255.255.255, 68 yiaddrr: 223.1.2.4 transaction ID: 654 Lifetime: 3600 secs DHCP request src: 0.0.0.0, 68 dest:: 255.255.255.255, 67 yiaddrr: 223.1.2.4 transaction ID: 655 Lifetime: 3600 secs time DHCP ACK src: 223.1.2.5, 67 dest: 255.255.255.255, 68 yiaddrr: 223.1.2.4 transaction ID: 655 Lifetime: 3600 secs 5: DataLink Layer