Mechanics Chapter 6 Motion due to Gravity

Slides:



Advertisements
Similar presentations
Introduction to Projectile Motion
Advertisements

Chapter 13, Section 2 Gravity and Motion
9.2 Calculating Acceleration
Work Done by a Constant Force
Free Fall and Projectile Motion
Projectile Motion Review Game
The two measurements necessary for calculating average speed are
Gravity and free fall.
Section 2 Extra Questions
Aim: How can we approach projectile problems?
Volume 4: Mechanics 1 Vertical Motion under Gravity.
Chapter 3 Free Fall Motion
Free Fall Chapter 2 Section 3.
Gravity and free fall Pg. 10
Lots of fun! Win valuable prizes!
5.6 Projectiles Launched at an Angle
Unit 1-3 Review 1. Mass = 4 kg, acceleration = 5m/s 2 → Find the weight - F g (N) 2 F t = 50N.
2D Motion.
Instructor: Dr. Tatiana Erukhimova
T101Q7. A spring is compressed a distance of h = 9.80 cm from its relaxed position and a 2.00 kg block is put on top of it (Figure 3). What is the maximum.
Do now A B + = ? The wrong diagrams Draw the right diagram for A + B.
Chapter 3 Pretest. 1. After a body has fallen freely from rest for 8.0 s, its velocity is approximately: A) 40 m/s downward, B) 80 m/s downward, C) 120.
Section 3 Falling ObjectsFalling Objects Section 3 Falling Objects Chapter 2.
Equations of Motion.
Free fall An object undergoing free fall has an acceleration of m/s2 . This varies from the equator when it is m/s2 to the poles when it.
Good Morning Come in quietly….KEY WORD QUIETLY Turn in Signed Progress Report Copy down homework Complete Bell Ringer.
Free Fall & Projectiles Chapter 3, sections 7-9 & Chapter 8, sections 1-4.
A soccer ball is kicked into the air. You may safely assume that the air resistance is negligible. The initial velocity of the ball is 40 ms -1 at an angle.
Gravity and Motion. Acceleration due to gravity Acceleration-the rate at which velocity changes over time. All objects accelerate toward Earth at a rate.
PHYS 20 LESSONS Unit 2: 2-D Kinematics Projectiles Lesson 5: 2-D Projectiles.
Goal: To projectile motions Objectives: 1)To understand freefall motions in 1 D 2)To understand freefall motions in 2D 3)To understand air drag and terminal.
Gravity and Acceleration Objects near the surface of Earth fall to Earth due to the force of gravity.  Gravity is a pulling force that acts between two.
Chapter 6 Forces in Motion.
Mechanics – quiz 1 Physics12 Vectors, scalars & kinematics Mechanics – quiz 1 Physics12 Vectors, scalars & kinematics Quiz answers 1/ Define the term ‘mechanics’
CHAPTER 6 MOTION IN 2 DIMENSIONS.
Motion in Two Dimensions Chapter 7.2 Projectile Motion What is the path of a projectile as it moves through the air? Parabolic? Straight up and down?
4.5 Free Fall. Falling Objects Imagine there is no air resistance and that gravity is the only thing affecting a falling object. An object moving under.
Motion (Chapter 2) Student Learning Objectives Compare and contrast terms used to describe motion Analyze circular and parabolic motion.
 Vertical projectile motion deals with objects that fall straight down, objects that get thrown straight up and the motion of an object as it goes straight.
5.6 Projectiles Launched at an Angle. No matter the angle at which a projectile is launched, the vertical distance of fall beneath the idealized straight-line.
Chapter 5 Review Projectile Motion.
 Gravity is the force of attraction between two objects due to their masses  Acceleration is the rate at which velocity (speed with a direction) changes.
Upward Motion. An Army paratrooper's parachute fails to open on a jump, good fortune is on the paratrooper’s side and he lands in a huge pile of manure.
CHAPTER - 7 Forces and Motion in Two Dimensions
An object that the only force acting on it is gravity Mr. P.
Gravity and Acceleration
Physics Support Materials Higher Mechanics and Properties of Matter
Projectile Motion Section 3.3.
Section 3 Falling Objects
A ball is rolling along a flat, level desk. The speed of the ball is 0
Projectile Review.
Mary pulls on a lawnmower parallel to the ground
Projectile Motion.
Chapter 11 Section 2.
Unit 3: Projectile & 2D Motion
9.2 Calculating Acceleration
9.2 Calculating Acceleration
Projectile Motion Discussion Questions
9.2 Calculating Acceleration
Acceleration and Force
9.2 Calculating Acceleration
Calculating Acceleration
How does gravity affect falling objects?
Free Fall MHS.
9.2 Calculating Acceleration
Uniform Acceleration Review
Vectors add direction to a magnitude.
Projectile Motion Chapter
Mike Wilson holds the world record for the highest slam dunk
Calculating Acceleration
Presentation transcript:

Mechanics Chapter 6 Motion due to Gravity 𝒏

6.1 Objects falling from height You already know from Chapter 3 objects falling under the influence of gravity has an acceleration of 𝑔=10 𝑚𝑠 −2 . This is excluding air resistance, for now. Since the acceleration is constant, you can use equations from section 1.5 to answer questions with gravity then.

6.1 Objects falling from height Example 1 At a swimming pool a girl steps from a diving board 4 m above the surface of the water. How fast is she moving when her feet hit the water?

6.1 Objects falling from height Example 2 A brick is dislodged from the top of a tall apartment building. A resident on a 10th floor balcony sees it passing, and a second later hears it hit the ground. Each story has a height of 2.5 m. How tall is the building and how fast is it moving when it hits the ground?

6.2 Objects projected upwards Gravity is still acting on an object while in the air. But if the object is moving upwards, the force is pulling it down, so gravity is now a deceleration, still with value g g = -10

6.2 Objects projected upwards Example 1 A ball is thrown vertically upwards and rises a height of 12.8 m. Find the speed with which it was thrown, and its velocity when it has risen 11 meters.

6.3 Motion on a sloping plane We are now going to look again at sloping planes, like in chapter 4 and 5. This time the object will be moving either upwards or downwards on the slope. Also, there will be friction, both smooth and rough introduced.

6.3 Motion on a sloping plane Example 1 A path runs up a hillside, at an angle of α to the horizontal, such that sin 𝛼 =0.6 𝑎𝑛𝑑 cos 𝛼=0.8 . A block is struck and starts to move up the path at a speed of 12 𝑚𝑠 −1 . The path is icy so friction can be ignored. Find how far up the path the block moves, the speed with which it hits the curb on its return, and the time it is in motion.

6.3 Motion on a sloping plane Example 2 Same example as #1 but now the ice has melted and there is a coefficient of friction between the block and the path of 0.45

6.4 Vertical Motion with Air resistance So far whenever an object is falling we haven’t considered air resistance. Air resistance in the air is like friction on a surface. There is a point where the air resistance balances the weight and the acceleration has maxed out. This is called the terminal speed.

6.4 Vertical Motion with Air resistance For air resistance, it is equal to the velocity squared time some constant k 𝑎𝑖𝑟 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒=𝑘 𝑣 2

6.4 Vertical Motion with Air resistance Three people step out of an aircraft, and fall vertically before opening their parachutes. The first has mass 80 kg falls upright with a terminal speed of 50 𝑚𝑠 −1 . The second has mass 120 kg and falls upright also. The third has mass 70 kg, and falls horizontally, which gives her air resistance by a factor of 12. Find the terminal velocity of the second and third people to jump out.

6.4 Vertical Motion with Air resistance A cannonball is projected vertically upwards from a mortar with an initial velocity of 40𝑚𝑠 −1 . The mortar is situated at the edge of a cliff 100 meters above the sea. On the way down, the cannonball just misses the cliff. In vertical fall the cannonball would have a terminal speed of 50𝑚𝑠 −1 . Calculate the acceleration of the cannonball just after it leaves the mortar barrel and at the highest point of its path. Draw graphs to compare the actual motion with the motion predicted if there were no air resistance.