Strong EWSB in Top Quark Production

Slides:



Advertisements
Similar presentations
Discovery of a standard model Higgs boson using vector boson fusion at the LHC Craig Buttar University of Sheffield Collaborators: G.Azuelos, V.Cavasinni,
Advertisements

Higgs at the Tevatron and LHC Rick St. Denis – Glasgow University.
Quark Compositeness Search with γ +Jet Final State at the LHC Satyaki Bhattacharya, Sushil S. Chauhan, Brajesh Choudhary, Debajyoti Choudhury Department.
1 Higgs Mechanism Cyril Topfel. 2 What to expect from this Presentation (Table of Contents) Some very limited theory explanation Higgs at.
Current limits (95% C.L.): LEP direct searches m H > GeV Global fit to precision EW data (excludes direct search results) m H < 157 GeV Latest Tevatron.
Search for Top Flavor Changing Neutral Current Decay t → qZ Ingyin Zaw DOE Review August 21, 2006.
Higgs Searches using Vector Boson Fusion. 2 Why a “Low Mass” Higgs (1) M H
Signatures of a new vector resonance from strongly interacting electroweak symmetry breaking M. Gintner, I. Melo, B. Trpišová University of Žilina Exotics.
Daniele Benedetti CMS and University of Perugia Chicago 07/02/2004 High Level Trigger for the ttH channel in fully hadronic decay at LHC with the CMS detector.
WW Scattering studies for the Future Linear Collider Andres F. Osorio Postgraduate student High Energy Physics Group.
FNAL Academic Lectures – May, –Tevatron -> LHC Physics 3 –Tevatron -> LHC Physics 3.1 QCD - Jets and Di - jets 3.2 Di - Photons 3.3 b Pair Production.
1 A Preliminary Model Independent Study of the Reaction pp  qqWW  qq ℓ qq at CMS  Gianluca CERMINARA (SUMMER STUDENT)  MUON group.
2004 Xmas MeetingSarah Allwood WW Scattering at ATLAS.
Gideon Bella Tel Aviv University On behalf of the ATLAS collaboration ATL-PHYS-PUB ATL-PHYS-PUB Prospects of measuring ZZ and WZ polarization.
New Vector Resonance as an Alternative to Higgs Boson (Strong EWSB)
Electroweak physics at the LHC with ATLAS APS April 2003 Meeting – Philadelphia, PA Arthur M. Moraes University of Sheffield, UK (on behalf of the ATLAS.
Higgs Reach Through VBF with ATLAS Bruce Mellado University of Wisconsin-Madison Recontres de Moriond 2004 QCD and High Energy Hadronic Interactions.
Electroweak Symmetry Breaking without Higgs Bosons in ATLAS Ryuichi Takashima Kyoto University of Education For the ATLAS Collaboration.
Feasibility of Detecting Leptoquarks With the CDF Detector Althea Moorhead Mentor: Darin Acosta.
BESS Model Resonance in the pp W + W tt + X Channel at LHC M. Gintner, I. Melo, B. Trpišová University of Žilina Herlany, September 2006.
1 TOP MASS MEASUREMENT WITH ATLAS A.-I. Etienvre, for the ATLAS Collaboration.
Charged Higgs boson at the LHC 이강영 ( 건국대학교 연세대학교
BESS Model Resonance in the pp W + W tt + X Channel at LHC M. Gintner, I. Melo, B. Trpišová University of Žilina CERN, Nov 1, 2006.
ATLAS Higgs Search Strategy and Sources of Systematic Uncertainty Jae Yu For the ATLAS Collaboration 23 June, 2010.
On the Brink of Revelation and Revolution: Electroweak Symmetry Breaking in 2008 Rick St. Denis – Glasgow University.
Marc M. Baarmand – Florida Tech 1 TOP QUARK STUDIES FROM CMS AT LHC Marc M. Baarmand Florida Institute of Technology PHYSICS AT LHC Prague, Czech Republic,
Particle Physics II Chris Parkes Top Quark Discovery Decay Higgs Searches Indirect mW and mt Direct LEP & LHC searches 2 nd Handout.
Vector boson scattering at CMS (LHC)
La Thuile, March, 15 th, 2003 f Makoto Tomoto ( FNAL ) Prospects for Higgs Searches at DØ Makoto Tomoto Fermi National Accelerator Laboratory (For the.
Prospects for leptoquark searches with ATLAS at the LHC N. Benekos (CERN) V. A. Mitsou (IFIC –Valencia) I. Panagoulias, Th. Papadopoulou (NTUA Athens)
1 UCSD Meeting Calibration of High Pt Hadronic W Haifeng Pi 10/16/2007 Outline Introduction High Pt Hadronic W in TTbar and Higgs events Reconstruction.
Backup slides Z 0 Z 0 production Once  s > 2M Z ~ GeV ÞPair production of Z 0 Z 0 via t-channel electron exchange. e+e+ e-e- e Z0Z0 Z0Z0 Other.
Strong EWSB in Top Quark Production at ILC Ivan Melo M. Gintner, I. Melo, B. Trpišová (University of Žilina) Praha, Mar 30, 2006.
LHC Prospects on Standard Model Higgs Riccardo Ranieri INFN and Università degli Studi di Firenze on behalf of ATLAS and CMS Collaborations ICHEP’04 32.
Eric COGNERAS LPC Clermont-Ferrand Prospects for Top pair resonance searches in ATLAS Workshop on Top Physics october 2007, Grenoble.
Study of Diboson Physics with the ATLAS Detector at LHC Hai-Jun Yang University of Michigan (for the ATLAS Collaboration) APS April Meeting St. Louis,
1 Donatella Lucchesi July 22, 2010 Standard Model High Mass Higgs Searches at CDF Donatella Lucchesi For the CDF Collaboration University and INFN of Padova.
1 Dijet Resonances Kazım Z. Gümüş and Nural Akchurin Texas Tech University Selda Esen and Robert M. Harris Fermilab PRS JETMET Meeting July 6, 2005.
New Strong LHC Rogerio Rosenfeld Instituto de Física Teórica UNESP  
Higgs Searches at the Tevatron (Run I)
Electroweak Symmetry Breaking without Higgs Bosons at LHC
Electroweak Physics Lecture 6
Krzysztof Piotrzkowski
M. V. Chizhov DESY/Sofia University, Bulgaria
Search for Dark Matter in Jets plus MET final state for Non-therma Dark Matter model Using Data From Proton-Proton Collisions at √s = 13TeV Sonaina Undleeb.
Venkat Kaushik, Jae Yu University of Texas at Arlington
Phenomenology of Twin Higgs Model
Lecture 13 Higgs Hunting --- The experimental Perspective
NIKHEF / Universiteit van Amsterdam
Xinyu Miao Department of Physics Univ. of Arizona 03/30/07
张仁友 (南昌, ) 中国科学技术大学粒子物理与技术中心
Phenomenology of Twin Higgs Model
Phenomenology of Twin Higgs Model
Xinyu Miao Department of Physics Univ. of Arizona 03/30/07
Louisiana Tech University
Beate Heinemann, UC Berkeley and LBNL
Anne-Isabelle ETIENVRE
Searches and EW physics at HERA
Higgs Vector Boson Fusion Production and Detection at the Tevatron
Phenomenology of Twin Higgs Model
Single Diffractive Higgs Production at the LHC *
Greg Heath University of Bristol
Low Mass LHC Why low mass
Experimental and theoretical Group Torino + Moscow
Electroweak Symmetry Breaking without Higgs Bosons in ATLAS
C.M.S.:.
Phenomenology of Vector Resonances from SEWSB at Future e+e- Colliders
Search for non-standard-model Higgs at the LHC with ATLAS
Measurement of b-jet Shapes at CDF
Search for a New Vector Resonance in the pp WWtt+X Channel at LHC
Presentation transcript:

Strong EWSB in Top Quark Production Praha, Nov 3, 2005 Strong EWSB in Top Quark Production Ivan Melo M. Gintner, I. Melo, B. Trpišová (University of Žilina)

Outline ρtt → tttt + X Motivation for new vector (ρ) resonances: Strong EW Symmetry Breaking (SEWSB) Vector resonance model ρ signal at LHC pp → ρtt → WWtt + X ρtt → tttt + X ρ signal at future e+e- colliders e+e- → ννtt e+e- → tt

EWSB: SU(2)L x U(1)Y → U(1)Q Weakly interacting models: - SUSY - Little Higgs Strongly interacting models: - Technicolor

Chiral SB in QCD EWSB SU(2)L x SU(2)R → SU(2)V , vev ~ 90 MeV SU(2)L x SU(2)R → SU(2)V , vev ~ 246 GeV

WL WL → WL WL WL WL → t t t t → t t L = i gπ Mρ /v (π- ∂μ π+ - π+ ∂μ π-) ρ0μ + gt t γμ t ρ0μ + gt t γμ γ5 t ρ0μ

International Linear Collider: e+e- at 1 TeV ee ―› ρtt ―› WW tt ee ―› ρtt ―› tt tt ee ―› WW ee ―› tt ee ―› νν WW ee ―› νν tt Large Hadron Collider: pp at 14 TeV pp ―› ρtt ―› WW tt pp ―› ρtt ―› tt tt pp ―› WW pp ―› tt pp ―› jj WW pp ―› jj tt

Chiral effective Lagrangian SU(2)L x SU(2)R global, SU(2)L x U(1)Y local L = Lkin + Lnon.lin. σ model - a v2 /4 Tr[(ωμ + i gv ρμ . τ/2 )2] + Lmass + LSM(W,Z) + b1 ψL i γμ (u+∂μ – u+ ρμ + u+ i g’/6 Yμ) u ψL + b2 ψR Pb i γμ (u ∂μ – u ρμ + u i g’/6 Yμ) u+ Pb ψR + λ1 ψL i γμ u+ Aμ γ5 u ψL + λ2 ψR Pλ i γμ u Aμ γ5 u+ Pλ ψR BESS Our model Standard Model with Higgs replaced with ρ gπ = Mρ /(2 v gv) gt = gv b2 /4 + … Mρ ≈ √a v gv /2 t

Unitarity constraints Low energy constraints gv ≥ 10 → gπ ≤ 0.2 Mρ (TeV) |b2 – λ2| ≤ 0.04 → gt ≈ gv b2 / 4 |b1 – λ1| ≤ 0.01 → b1 = 0 Unitarity constraints WL WL → WL WL , WL WL → t t, t t → t t gπ ≤ 1.75 (Mρ= 700 GeV) gt ≤ 1.7 (Mρ= 700 GeV)

Partial (Γ―›WW) and total width Γtot of ρ

Search at LHC: pp → W W t t + X J. Leveque et al. ATL-PHYS-2002-019: pp -> Htt -> WWtt MH =[120-240] GeV ρ BRA: pp → ρtt →WWtt σ(WWtt) = σ(ρtt) x BR(ρ->WW) 2) Full calculation: pp → WWtt

pp → W W t t + X (full calculation) 39 diagrams in gg channel No resonance background ρ ρ ρ

CompHEP results: pp → W W t t + X ρ: Mρ=700 GeV, Γρ=4 GeV, b2=0.08, gv=10 SM: MH = 700 GeV ΓH = 184 GeV MWW(GeV) MWW(GeV) σ(gg) = 10.2 fb ―› 1.0 fb σ(gg) = 11.3 fb ―› 0.20 fb No resonance background: σ(gg) = 0.037 fb Cuts: 700-3Γρ < mWW < 700 +3Γρ (GeV) pT > 100 GeV, |y| < 2

Total cross sections for ρtt and WWtt BRA: σ(WWtt) = σ(ρtt) x BR(ρ->WW)

|N(ρ) – N(no res.)| √(N(no res.)) R = ≈ S/√B > 5 BRA Full calc.

Search at LHC: tttt vs WWtt BRA BRA

Search at Hadron Colliders: p+p(p) ―› t + t Tevatron: p + p ―› t + t σS = 1.2 fb σB = 8 306 fb LHC: p + p ―› t + t σS = 22.7 fb σB = 752 000 fb Mρ=700 GeV Γρ=12.5 GeV No cuts

Subset of fusion diagrams + approximations (Pythia) Full calculation of 66 diagrams at tree level (CompHEP)

Pythia vs CompHEP Before cuts √s (GeV) 800 1000 1500 ρ (M = 700 GeV, Γ = 12.5 GeV, g’’ = 20, b2 = 0.08) Before cuts √s (GeV) 800 1000 1500 Pythia (fb) 0.35 0.95 3.27 CompHEP (fb) 0.66 1.16 3.33

Backgrounds (Pythia) e+e- → e+e- tt e+e- → tt γ σ(0.8 TeV) = 300.3 + 1.3 fb → 0.13 fb (0.20 fb) σ(1.0 TeV) = 204.9 + 2.4 fb → 0.035 fb (0.16 fb)

e- e+ → t t ρ different from Higgs ! x+y=560 nm z=0.40 mm n=2x1010 ρ (M= 700 GeV, b2=0.08, g’’=20)

Conclusions New strong ρ-resonance model pp → W W t t + X pp → t t t t + X at LHC R values up to a few 100 (before t,W decays and detector effects), L = 100 fb-1 Backgrounds pp → tt, W + jets, Z + jets, … ? e+e- → ννtt R ≤ 26 at CM energy = 1 TeV, L = 200 fb-1 e+e- → tt Lscan = 1 fb-1 Similar work on pp → t t t t + X : T.Han et al, hep-ph/0405055

WWtt reconstruction WWtt →lν jj jjb jjb b tagging …… 50 % l detection …. 90 % one trigger lepton pT > 30 (20) GeV e (μ) jets pT > 30 GeV kinematical cuts for 6 jets …….. ≈ 20 % BR: W → e(μ)ν ….. 21.3 % … Pl W → hadrons …68 % …. Ph ε = εcutsεb2εl 4 Pl Ph = 1.2 %

Search at Hadron Colliders Mρ=700 GeV, Γρ=12.5 GeV Tevatron: p + p ―› t + t σS = 1.2 fb σB = 8 306 fb LHC: p + p ―› t + t σS = 22.7 fb σB = 752 000 fb

pp → ρ t t + X (8 diagrams in gg channel) BRA: σ(WWtt) = σ(ρtt) x BR(ρ->WW)