Fig. 3 Underwater adhesion performance of adhesive coatings made of mammalian LC domain proteins. Underwater adhesion performance of adhesive coatings.

Slides:



Advertisements
Similar presentations
Fig. 2 Reconfiguration of liquid metals into 3D structures.
Advertisements

Fig. 1 High-resolution printing of liquid metals.
Fig. 3 The electrical contact of direct-printed and reconfigured liquid metals. The electrical contact of direct-printed and reconfigured liquid metals.
Fig. 2 Global production, use, and fate of polymer resins, synthetic fibers, and additives (1950 to 2015; in million metric tons). Global production, use,
Fig. 2 CL-DMD modeling of FKBP.
Fig. 3 Vibrational spectra of human bones from the Copper Age (Scoglietto cave, Italy). Vibrational spectra of human bones from the Copper Age (Scoglietto.
Vibrational spectra of medieval human bones (Leopoli-Cencelle, Italy)
Fig. 1 Map of water stress and shale plays.
Fig. 1 Crystal and electronic structure of WTe2.
Probing ferroelectricity in a metal-gated WTe2 thin film sample
Fig. 1 Examples of experimental stimuli and behavioral performance.
Fig. 4 Resynthesized complex boronic acid derivatives based on different scaffolds on a millimole scale and corresponding yields. Resynthesized complex.
Fig. 6 Comparison of properties of water models.
Fig. 3 Observed and modeled basal tilt rates.
Fig. 2 Reference-fixing experiment, results.
Fig. 2 Ferroelectric domains resolved in WTe2 single crystals.
Fig. 5 Conservation of m6A in mammals.
Fig. 3 Glucose- and structure-dependent insulin release.
Fig. 3 Rotation experiment, setup.
Fig. 1 Product lifetime distributions for the eight industrial use sectors plotted as log-normal probability distribution functions (PDF). Product lifetime.
Fig. 3 Gate voltage dependence of the areal iDMI and PMA.
Fig. 3 Affective responses by exchange condition (PR and RE), level of redistribution (0 = random, one-card, and two-card exchange), and outcome as winner.
Fig. 1 Proportions of normative beliefs by exchange condition, level of redistribution (0 = random, one-card, and two-card exchange), and outcome as winner.
Fig. 1 Distribution of total and fake news shares.
Fig. 3 Characteristics of UV and temperature sensors.
Fig. 2 2D QWs of different propagation lengths.
Fig. 5 Molecular dynamics simulations of Rac1.
Fig. 1 Schematic illustration and atomic-scale rendering of a silica AFM tip sliding up and down a single-layer graphene step edge on an atomically flat.
Fig. 3 Load dependence of friction force and corresponding COF.
Fig. 1 Histograms of the number of first messages received by men and women in each of our four cities. Histograms of the number of first messages received.
Fig. 5 Schematic phase diagrams of Ising spin systems and Mott transition systems. Schematic phase diagrams of Ising spin systems and Mott transition systems.
Fig. 4 OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with different pH. OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with.
Fig. 2 14C-CH4 data from each station and Keeling plot analysis.
Fig. 4 The mechanical performances of thermally stable click-ionogels.
Fig. 4 Evolution of fraction of sickled RBCs under hypoxia.
Fig. 4 Visualization of complex loop motions by 1-μs MD trajectories.
Fig. 3 Production of protein and Fe(II) at the end of growth correlated with increasing concentrations of ferrihydrite in the media that contained 0.2.
Fig. 2 Folding motions of the TCO with strain-softening behavior.
Fig. 1 Size fractions of MPPs in different fertilizers.
Fig. 2 Characterizing the performance of msTENG.
Fig. 5 Comparison of the liquid products generated from photocatalytic CO2 reduction reactions (CO2RR) and CO reduction reactions (CORR) on two catalysts.
Fig. 1 Location of the Jirzankal Cemetery.
Fig. 5 The VWF A2 domain exists predominantly in a reduced dithiol and glutathionylated form in healthy donors. The VWF A2 domain exists predominantly.
Fig. 4 CO2 emission changes triggered by the JJJ clean air policy.
Fig. 3 SOM analysis of the change in the incidence of modes of SST variability and consequent hydrological change. SOM analysis of the change in the incidence.
Fig. 4 Phase diagram showing significant order parameters ∣pk∣ versus T and wc. Phase diagram showing significant order parameters ∣pk∣ versus T and wc.
Fig. 2 Realization of asymmetric photon transport.
Fig. 2 Mean field results. Mean field results. (A) Solutions P(x) to Eq. 4 for a range of T and wc = (B) Modulus ∣pk∣ of order parameters versus.
Fig. 2 Comparison of the observed DRs and the estimates by the VR model and FL. Comparison of the observed DRs and the estimates by the VR model and FL.
Fig. 3 Comparisons of NDVI trends over the globally vegetated areas from 1982 to Comparisons of NDVI trends over the globally vegetated areas from.
Fig. 2 Particles detected in snow samples collected at different locations from Europe to the Arctic. Particles detected in snow samples collected at different.
Fig. 1 Schematic depiction of a paradigm for rapid and guided discovery of materials through iterative combination of ML with HiTp experimentation. Schematic.
Fig. 2 In situ extraction of miRNAs using the nanowire-anchored microfluidic device. In situ extraction of miRNAs using the nanowire-anchored microfluidic.
Fig. 4 Mapping of abundance of the most dominant bacterial and archaeal phyla across France. Mapping of abundance of the most dominant bacterial and archaeal.
Fig. 4 Spatial mapping of the distribution and intensity of industrial fishing catch. Spatial mapping of the distribution and intensity of industrial fishing.
Fig. 4 Single-particle contact angle measurements.
ATP analogs have little effect on the conformation of the 2CARD domain
Fig. 4 Changes in amount of atmospheric aerosol and of solar energy at Earth’s surface after nuclear exchange. Changes in amount of atmospheric aerosol.
Fig. 2 Supraballs and films from binary SPs.
Fig. 3 Performance of the generative model G, with and without stack-augmented memory. Performance of the generative model G, with and without stack-augmented.
Fig. 4 Behavior of resistance peak near density nm = 5.
Fig. 2 Comparison between the different reflective metasurface proposals when θi = 0° and θr = 70°. Comparison between the different reflective metasurface.
The combined signal spectra of PSD for protons and helium nuclei
Fig. 1 Design principle and SEM characterization of super-origami DNA nanostructures with n-tuples. Design principle and SEM characterization of super-origami.
Fig. 3 Characterization of the luminescence temporal time traces.
Fig. 2 Fibrous structure, roughness, and softness of SNE surface enabling switchable adhesion. Fibrous structure, roughness, and softness of SNE surface.
Fig. 3 Switchable adhesion influenced by structural design and object conductivity. Switchable adhesion influenced by structural design and object conductivity.
Fig. 4 Electrochemical mechanism studies.
Fig. 5 CD19-tPSMA(N9del) CAR T cell numbers in mouse and human.
Fig. 3 Temperature-dependent heat capacity of YbTM2Zn20.
Presentation transcript:

Fig. 3 Underwater adhesion performance of adhesive coatings made of mammalian LC domain proteins. Underwater adhesion performance of adhesive coatings made of mammalian LC domain proteins. (A) Schematic of a colloidal AFM probe used to measure the asymmetric adhesion of adhesive coatings on smooth mica surfaces. (B) Comparison of adhesion forces [normalized force (F/R) and adhesion energies (Ead = F/3πR)] for TLC-M coatings produced at 4 and 25°C (measured with a gold probe tip). Representative adhesion force-distance curves in the right panel were collected on one spot of the coated mica surface using the single force mode (gold probe tip). (C) Comparison of adhesion forces and adhesion energies for the TDP43 LC domain (control), unmodified TLC-M, and DOPA-modified TLC-M coatings produced at 4°C (gold probe tip) (left) and representative adhesion force-distance curves of the control TDP43 LC, unmodified TLC-M, and DOPA-modified TLC-M coatings (right); the curves correspond to three random spots of the coated mica surface (single force mode; gold probe tip). (D) Frequency change comparison in QCM-D experiments showing the different adsorption capacities of unmodified TLC-M and DOPA-modified TLC-M coatings for a gold surface at 4°C. Inset: Plots of ΔD versus ΔF corresponding to the frequency change curve. (E) CR staining of DOPA-modified TLC-M coatings (produced in solution pH 5, 0.05 M NaCl) after a continuous 7-day incubation under harsh conditions (pH 3 and 11 buffers, 1.0 M high NaCl concentration buffer). (F) Adhesion forces and adhesion energies for DOPA-modified TLC-M coatings produced at a range of pH values (3 to 11) at 4°C measured in pH 5 buffer with a gold probe tip. (G) Adhesion forces and adhesion energies for DOPA-modified TLC-M coatings produced at a range of NaCl concentrations (50 to 1000 mM) at 4°C measured in pH 5 buffer with a gold probe tip. **P < 0.01, Student’s t test. Error bars indicate the SD. For each comparison in (B), (C), (E), and (F), n = 25 (five spots per mica plate, with each spot sampled five times using single force mode). In (B) and (D), the adhesion force curves are plotted as force-displacement curves: The x axis labeled as Z snsr (Z sensor) represents the displacement between the sample surface and the resting position of the cantilever (rather than the actual distance between the sample surface and the AFM tip). Note that all the underwater adhesion measurements were performed at 25°C aqueous temperature. Mengkui Cui et al. Sci Adv 2019;5:eaax3155 Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).