3D printing of a wearable personalized oral delivery device: A first-in-human study by Kun Liang, Simone Carmone, Davide Brambilla, and Jean-Christophe.

Slides:



Advertisements
Similar presentations
Fig. 4 3D reconfiguration of liquid metals for electronics.
Advertisements

Fig. 2 Transport properties of a BP transistor at low temperature.
Fig. 2 Reconfiguration of liquid metals into 3D structures.
Fig. 1 High-resolution printing of liquid metals.
Fig. 3 The electrical contact of direct-printed and reconfigured liquid metals. The electrical contact of direct-printed and reconfigured liquid metals.
Fig. 2 Global production, use, and fate of polymer resins, synthetic fibers, and additives (1950 to 2015; in million metric tons). Global production, use,
Fig. 2 CFD results. CFD results. Results of CFD simulations in horizontal (left column) and vertical (right column) cross-sections. All models oriented.
Fig. 2 Box plots of water use with lateral lengths.
Fig. 3 Oil, gas, and FP water variations with time.
Fig. 1 Map of water stress and shale plays.
Fig. 1 Examples of experimental stimuli and behavioral performance.
Fig. 1 NP-free Ch-CNC droplets.
Fig. 4 Resynthesized complex boronic acid derivatives based on different scaffolds on a millimole scale and corresponding yields. Resynthesized complex.
Fig. 6 Comparison of properties of water models.
Fig. 1 Mean and median RCR (Relative Citation Ratio) of Roadmap Epigenomics Program research articles for each year. Mean and median RCR (Relative Citation.
Fig. 2 Reference-fixing experiment, results.
Fig. 3 Glucose- and structure-dependent insulin release.
Fig. 3 Scan rate effects on the layer edge current.
Fig. 3 Rotation experiment, setup.
Fig. 1 Product lifetime distributions for the eight industrial use sectors plotted as log-normal probability distribution functions (PDF). Product lifetime.
Fig. 1 The structure of the 3DGraphene foam.
Eruptive history of the Campi Flegrei caldera during the last 15 ka
Fig. 3 2D horizontal Br−tracer and cable bacteria distributions.
Fig. 2 2D QWs of different propagation lengths.
Fig. 6 Longevity and mechanical perturbation of a liquid membrane.
Fig. 6 WPS imaging of different chemical components in living cells.
The changes in the water intensity of hydraulic fracturing with time
Fig. 1 Characterization of particles and scaffold.
Fig. 3 Differentiation and classification of motor skill between Novice and Expert surgeons. Differentiation and classification of motor skill between.
Fig. 1 Histograms of the number of first messages received by men and women in each of our four cities. Histograms of the number of first messages received.
Characteristics of ultrathin single-crystalline semiconductor films
Fig. 1 Average contribution (million metric tons) of seafood-producing sectors, 2009–2014. Average contribution (million metric tons) of seafood-producing.
Fig. 4 The mechanical performances of thermally stable click-ionogels.
Fig. 1 Cross-sectional images of He-implanted V/Cu/V samples.
Fig. 4 Evolution of fraction of sickled RBCs under hypoxia.
Fig. 1 Structure and absorption spectra of the P
Fig. 2 Magnetic properties of FGT/Pt bilayer.
Fig. 3 Production of protein and Fe(II) at the end of growth correlated with increasing concentrations of ferrihydrite in the media that contained 0.2.
Fig. 5 The different fractions of the rates of energy flow in the oscillating thermal circuit for the experiment with L = 58.5 H shown in Fig. 4A. The.
Fig. 2 Comparison of laser-chemical tailored Ni(TPA/TEG) and Ni(TPA) composites. Comparison of laser-chemical tailored Ni(TPA/TEG) and Ni(TPA) composites.
Fig. 1 A hollow polymer fiber filled with solid gallium creates a tough metamaterial core-shell fiber. A hollow polymer fiber filled with solid gallium.
Fig. 2 Sources of plastic waste imports into China in 2016 and cumulative plastic waste export tonnage (in million MT) in 1988–2016. Sources of plastic.
Fig. 5 Comparison of the liquid products generated from photocatalytic CO2 reduction reactions (CO2RR) and CO reduction reactions (CORR) on two catalysts.
Fig. 4 BS-SEM images, ternary diagrams, and phase maps for the text and reverse sides of the TS. BS-SEM images, ternary diagrams, and phase maps for the.
Fig. 3 We posit the hyperconcentrated period of domain news, characterized by high article volume and similarity, which G-causes public attention changes.
Fig. 2 News volume and median article similarity as predictors of public attention in the domain Drones. News volume and median article similarity as predictors.
Fig. 1 Location of the Jirzankal Cemetery.
Fig. 4 CO2 emission changes triggered by the JJJ clean air policy.
Fig. 4 Comparison of fracture toughness by three-point bending test.
Fig. 5 Curve and graph data processing workflows and their representative 3D-printed models. Curve and graph data processing workflows and their representative.
Fig. 6 MSC encapsulation in vitro within PdBT cross-linked gels.
Fig. 5 Simulation of the mechanical properties of the 3DGraphene foam in a wide temperature range down to the cryogenic region. Simulation of the mechanical.
Fig. 3 Comparisons of NDVI trends over the globally vegetated areas from 1982 to Comparisons of NDVI trends over the globally vegetated areas from.
Fig. 2 Particles detected in snow samples collected at different locations from Europe to the Arctic. Particles detected in snow samples collected at different.
Fig. 4 Mapping of abundance of the most dominant bacterial and archaeal phyla across France. Mapping of abundance of the most dominant bacterial and archaeal.
Fig. 4 Spatial mapping of the distribution and intensity of industrial fishing catch. Spatial mapping of the distribution and intensity of industrial fishing.
Fig. 3 Device architecture, photovoltaic performance, and operational stability of 3D/2D bilayer PSCs. Device architecture, photovoltaic performance, and.
Fig. 4 Single-particle contact angle measurements.
Fig. 3 Supraballs and films assembled from binary 219/217nm SPs/SMPs.
Fig. 2 Supraballs and films from binary SPs.
Fig. 3 Performance of the generative model G, with and without stack-augmented memory. Performance of the generative model G, with and without stack-augmented.
Fig. 3 Mechanical properties of graphene-enabled Ni/Ni3C composite with a brick-and-mortar structure. Mechanical properties of graphene-enabled Ni/Ni3C.
Fig. 3 High-tide flood extent at water levels of 1. 73, 2. 03, 2
Fig. 4 Behavior of resistance peak near density nm = 5.
Fig. 2 Comparison between the different reflective metasurface proposals when θi = 0° and θr = 70°. Comparison between the different reflective metasurface.
Fig. 1 Design principle and SEM characterization of super-origami DNA nanostructures with n-tuples. Design principle and SEM characterization of super-origami.
Fig. 1 Overview of amber clast with synchrotron x-ray μCT image of articulated snake skeleton (DIP-S-0907). Overview of amber clast with synchrotron x-ray.
Fig. 1 Architected materials fabrication by projection microstereolithography–based additive manufacturing using poly(ethylene glycol) diacrylate resin.
Fig. 3 Rubbery strain, pressure, and temperature sensors.
Fig. 2 Imaging blood vessel before and after closure.
Presentation transcript:

3D printing of a wearable personalized oral delivery device: A first-in-human study by Kun Liang, Simone Carmone, Davide Brambilla, and Jean-Christophe Leroux Science Volume 4(5):eaat2544 May 9, 2018 Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Fig. 1 Workflow for the manufacture of wearable personalized oral delivery mouthguards by 3D printing. Workflow for the manufacture of wearable personalized oral delivery mouthguards by 3D printing. The manufacture of personalized oral delivery mouthguards by 3D printing involved two stages. In the data acquisition stage, we obtained an intraoral scan of the maxillary anatomy of the subject and the impression served as the template for 3D printing. 3D manufacture began with the production of printable pharmaceutical-grade (PG) filaments loaded with the desired compound by hot melt extrusion (HME). We obtained filaments with tunable release rates by adjusting the polymer composition in the feed and subsequently used them to fabricate prototypes with customizable designs (based on the scanned templates) by FDM-based 3D printing. Finally, we evaluated the performance of the personalized 3D-printed mouthguard on each individual. Kun Liang et al. Sci Adv 2018;4:eaat2544 Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Fig. 2 Selection of compound-loaded filaments with tunable release properties for 3D printing. Selection of compound-loaded filaments with tunable release properties for 3D printing. (A) Chemical structures of CBS and VA. (B) TGA thermograms of CBS and VA. (C) Loading efficiencies of CBS and VA in the filaments after HME. PVA (high) and PVA (low) represent PVA/PLA feed weight ratios of 6:3 and 5:4, respectively, for CBS and ratios of 2:3 and 1:3, respectively, for VA. (D and E) Cumulative release of the CBS-loaded (D) and the VA-loaded (E) filaments in vitro. (F) Weight loss of the CBS-loaded and VA-loaded filaments after the in vitro dissolution study. Data are means ± SD (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. Kun Liang et al. Sci Adv 2018;4:eaat2544 Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Fig. 3 Characterizations of filaments loaded with either CBS or VA. Characterizations of filaments loaded with either CBS or VA. (A and B) DSC thermograms of pure CBS (A), filaments consisting of only PLAS or PVAS, CBS-loaded PVA (high), and PVA (low) filaments, and pure VA (B), filaments consisting of only PLAPG or PVAPG, as well as VA-loaded PVA (high) and PVA (low) filaments. (C and D) XRPD diffractograms of the same compounds and filaments as in (A) [for (C)] and (B) [for (D)]. (E) SEM images of filaments loaded with either CBS or VA: surface, cross section, and a magnified view of the cross section. Scale bars, 100 μm (for surface and cross section) and 10 μm (for a magnified view of the cross section). (F and G) Stress-strain curve of PLAS, PVAS, and CBS-loaded filaments (F) and PLAPG, PVAPG, and VA-loaded filaments (G). Kun Liang et al. Sci Adv 2018;4:eaat2544 Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Fig. 4 3D printing of mouthguards loaded with either CBS or VA that have tunable release properties. 3D printing of mouthguards loaded with either CBS or VA that have tunable release properties. (A) Image of a 3D-printed mouthguard comprising a CBS-free top (red) and CBS-containing base (off-white) fabricated using PLAS filament and PVA (high) CBS-loaded filament, respectively. (B) Image of a 3D-printed mouthguard comprising a VA-free top (white) and VA-containing base (off-white) fabricated using PLAPG/PVAPG (9:1, w/w) filament and PVA (high) VA-loaded filament, respectively. (C) Amount of residual CBS and VA in the mouthguards following 3D printing using the CBS-loaded and VA-loaded filaments. (D and E) Cumulative release of the CBS-loaded (D) and VA-loaded (E) mouthguards in vitro. (F) Images of the CBS-loaded and VA-loaded mouthguards before and after the in vitro dissolution study. A distinct whitening of the regions containing the CBS or VA occurred. (G) Weight loss of the CBS-loaded and VA-loaded mouthguards after the in vitro dissolution study. (H) Amount of residual CBS and residual VA in the mouthguards after the in vitro dissolution study. Data are means ± SD (n = 3). **P < 0.01, ***P < 0.001, and ****P < 0.0001. Kun Liang et al. Sci Adv 2018;4:eaat2544 Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Fig. 5 3D printing of tailored VA-loaded mouthguards for the first-in-human study and evaluation of VA release in the saliva. 3D printing of tailored VA-loaded mouthguards for the first-in-human study and evaluation of VA release in the saliva. (A) 3D-printed VA-loaded mouthguards with three different designs: HSPH, VSPH, and HSPL. (B) Representative images of the 3D-printed VA-loaded mouthguards tailored to each volunteer’s maxillary anatomy in the HSPH group. (C and D) Mean VA concentrations in the saliva of volunteers wearing mouthguards of the three designs during the first cycle (C) and second cycle (D) of wearing for 2 hours continuously. (E) Amount of residual VA in the mouthguards following three cycles of wearing by the volunteers. Box-and-whisker plot showing median (horizontal line), interquartile range (box), minimum and maximum of all of data (whiskers). (F) Representative images of each of the three types of VA-loaded mouthguards before and after three cycles of wearing by the same volunteer. A distinct whitening of the region containing VA was observed, as indicated by the arrows. Data for C and D are means ± SD (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. Kun Liang et al. Sci Adv 2018;4:eaat2544 Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).