PERLE - Current Accelerator Design

Slides:



Advertisements
Similar presentations
MCDW 2008, JLAB, Dec 8-12, Multi-pass Droplet Arc Design Guimei WANG (Muons Inc./ODU) Dejan Trbojevic (BNL) Alex Bogacz (JLAB)
Advertisements

1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
Recirculating pass optics V.Ptitsyn, D.Trbojevic, N.Tsoupas.
DR km DTC Lattice 7 July 2011 D. Rubin. DTC01 layout 1.Circumference = m, 712m straights 2.~ 6 phase trombone cells 3.54 – 1.92m long wigglers.
FFAG Workshopfermilab April 2005 f Summary: FFAG WORKSHOP nonscaling electron model muon FFAGs C. Johnstone Fermilab.
LHeC Test Facility Meeting
Thomas Jefferson National Accelerator Facility Page 1 23 rd Annual HUGS Program June 2-20, 2008 CEBAF Overview HUGS08 June 3 CEBAF Overview HUGS08 June.
Operated by the Jefferson Science Associates for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz, Dogbone RLA – Design.
Electron Source Configuration Axel Brachmann - SLAC - Jan , KEK GDE meeting International Linear Collider at Stanford Linear Accelerator Center.
Recent Progress Toward a Muon Recirculating Linear Accelerator S.A.Bogacz, V.S.Morozov, Y.R.Roblin 1, K.B.Beard 2, A. Kurup, M. Aslaninejad, C. Bonţoiu,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility 1 Alex Bogacz EIC14 Workshop, Jefferson Lab, March 20,
D. Trbojevic, N. Tsoupas, S. Tepikian, B. Parker, E. Pozdeyev, Y. Hao, D. Kayran, J. Beebe-Wang, C. Montag, V. Ptitsyn, and V. Litvinenko eRHIC and MeRHIC.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Muon Collider Design Workshop, BNL, December 1-3, 2009.
LER Workshop, October 11, 2006LER & Transfer Line Lattice Design - J.A. Johnstone1 LHC Accelerator Research Program bnl-fnal-lbnl-slac Introduction The.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
MeRHIC Internal Cost Review October, Dmitry Kayran for injector group MeRHIC Internal Cost Review October 7-8, 2009 MeRHIC: Injection System Gun.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility 1 Alex Bogacz UITF Beam-line Modeling (2) UITF Mtg. JLAB,
Future Circular Collider Study Kickoff Meeting CERN ERL TEST FACILITY STAGES AND OPTICS 12–15 February 2014, University of Geneva Alessandra Valloni.
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz,
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz Status and Plans for Linac and RLAs.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Status of Baseline Linac and RLAs Design.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility 1 LHeC Workshop, Chavennes-de-Bogis, June 26, 2015 LHeC.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Muon Acceleration – RLA, FFAG and Fast Ramping.
Optics considerations for PS2 October 4 th, 2007 CARE-HHH-APD BEAM’07 W. Bartmann, M. Benedikt, C. Carli, B. Goddard, S. Hancock, J.M. Jowett, A. Koschik,
Optics solutions for the PS2 ring February 11 th, 2008 LIS Section Meeting Y. Papaphilippou.
Operated by the Jefferson Science Associates for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz, Acceleration in.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz IDS- NF Acceleration Meeting, Jefferson Lab,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz NuFact’08, Valencia, Spain, July 4, 2008 Acceleration.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Recirculating Linac Acceleration  End-to-end.
Preservation of Magnetized Beam Quality in a Non-Isochronous Bend
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz NuFact’08, Valencia, Spain, July 4, 2008 Alex.
WG2: Beam Dynamics, Optics and Instrumentation – Summary
J-PARC main ring lattice An overview
Progress on the Linac and RLAs
Warm magnets for LHeC / Test Facility arcs
JLEIC simulations status April 3rd, 2017
PERLE - Current Accelerator Design
‘Multi-pass-Droplet’ Experiment
Main magnets for PERLE Test Facility
Status of Linac and RLAs – Simulations
Muon RLA - Design Status and Simulations
Muon RLA - Design Status and New Options
Linac and RLAs – Overview of NF-IDS
Electron Ring Optics Design
Electron Source Configuration
LHC (SSC) Byung Yunn CASA.
Progress on the Linac and RLAs
Collider Ring Optics & Related Issues
Optics solutions for the PS2 ring
Optics ‘Scrapbook’ for ERL Test Facility
RLA WITH NON-SCALING FFAG ARCS
Negative Momentum Compaction lattice options for PS2
Optics and Layout of Alex Bogacz Workshop, Orsay, Feb. 23, 2017.
Accelerator and Interaction Region
Low Emittance Lattices
Betatron Motion with Coupling of Horizontal and Vertical Degrees of Freedom – Part II Alex Bogacz USPAS, Hampton, VA, Jan , 2011.
S.A. Bogacz, G.A. Krafft, S. DeSilva and R. Gamage
Muon RLA - Design Status and New Options
– Overview Alex Bogacz JLAB, Aug. 14, 2017.
Alex Bogacz, Geoff Krafft and Timofey Zolkin
PS2 meeting NMC lattice for PS2 Y. Papaphilippou September 28th, 2007.
Muon RLA - Design Status and Simulations
Optics considerations for PS2
Update on Alternative Design of jleic ion injector Complex B
Negative Momentum Compaction lattice options for PS2
Transfer Line for EIC.
Alex Bogacz, Geoff Krafft and Timofey Zolkin
Booster to Ion Ring Transfer Line
Large Ion Booster Re-design Update
Presentation transcript:

PERLE - Current Accelerator Design Alex Bogacz PERLE Mtg, May 26, 2017

Overview PERLE@Orsay (450 MeV) - Layout Compact footprint (24 m × 5.5 m × 0.8 m) Configured with to styles of 1.3 Tesla ‘curved bends’ proposed by Pierre Thonet Multi-pass linac Optics in ER mode Choice of linac Optics: 3-pass ‘up’ + 3-pass ‘down’ Arc Optics Architecture Isochronous Arcs with Flexible Momentum Compaction (FMC) Optics Switchyard Vertical Spreaders/Recombiners with matching sections: Linacs-Arcs ‘First cut’ lattice design for PERLE@Orsay Two Linacs + Six Arcs Magnet inventory (Dipoles and Quads ) Alex Bogacz PERLE Mtg, May 26, 2017

PERLE@Orsay - Layout 450 MeV 1 : 3 : 5 2 : 4 : 6 DE = 75 MeV 5.5 m injector 5 MeV DE = 75 MeV 2 : 4 : 6 5 MeV dump DC = lRF/2 Alex Bogacz PERLE Mtg, May 26, 2017

Three passes ‘up’ + Three passes ‘down’ PERLE@Orsay - Layout 450 MeV 1 : 3 : 5 24 m 0.8 m 5.5 m DE = 75 MeV injector 5 MeV DE = 75 MeV 2 : 4 : 6 5 MeV dump DC = lRF/2 Three passes ‘up’ + Three passes ‘down’ Alex Bogacz PERLE Mtg, May 26, 2017

Alternative Magnet Solution (Cost-effective) Alex Bogacz PERLE Mtg, May 26, 2017

Alex Bogacz PERLE Mtg, May 26, 2017

Alex Bogacz PERLE Mtg, May 26, 2017

PERLE@Orsay - Layout Top view Side view 2 : 4 : 6 1 : 3 : 5 5.5 m 24 m 4 m 10 m 2 : 4 : 6 1 : 3 : 5 Side view 0.4 m + 0.4 m Alex Bogacz PERLE Mtg, May 26, 2017

Cryo-module - Layout and Cavity Specs SNS 805 MHz Cryo-module 8.491 m 801.58 MHz RF, 5-cell cavity: l = 37.40 cm Lc = 5l/2 = 93.50 cm Grad = 20 MeV/m (18.7 MeV per cavity) DE= 74.8 MeV per Cryo-module 93.5 cm Alex Bogacz PERLE Mtg, May 26, 2017

Linac - Layout Linac length: 26 × lRF Re-injection chicane 8.491 m 9.72 10 BETA_X&Y[m] BETA_X BETA_Y Cryo-module (8.491 m) Re-injection chicane Linac length: 26 × lRF Alex Bogacz PERLE Mtg, May 26, 2017

Multi-pass ER Optics Acceleration Deceleration E6 E5 E4 E3 E2 E1 Einj 59.2518 12 BETA_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y E6 E5 E4 E3 E2 E1 Einj Acceleration 59.2518 12 BETA_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y Einj E1 E2 E3 E4 E5 E6 Deceleration Alex Bogacz PERLE Mtg, May 26, 2017

Arc 6 Optics – FMC Lattice 7.70429 10 2 -2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 453 MeV 4×450 bends Qx,y = 1.25 triplet: Q1 Q2 Q3 singlet: Q4 triplet: Q3 Q2 Q1 Quadrupoles: Q1 L[cm] =10 G[T/m] = - 23.6 Q2 L[cm] =15 G[T/m] = 28.2 Q3 L[cm] =10 G[T/m] = - 22.4 Q4 L[cm] =10 G[T/m] = 8.6 Dipoles: (91.2 cm long) B = 1.3 Tesla Alex Bogacz PERLE Mtg, May 26, 2017

Arc 3 Optics – FMC Lattice 7.52246 10 2 -2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 230 MeV 4×450 bends Qx,y = 1.25 triplet: Q1 Q2 Q3 singlet: Q4 triplet: Q3 Q2 Q1 Quadrupoles: Q1 L[cm] =10 G[T/m] = - 13.2 Q2 L[cm] =15 G[T/m] = 13.1 Q3 L[cm] =10 G[T/m] = - 9.3 Q4 L[cm] =10 G[T/m] = 3.1 Dipoles: (45.6 cm long) B = 1.3 Tesla Alex Bogacz PERLE Mtg, May 26, 2017

Switchyard - Vertical Separation of Arcs (1, 3, 5) 80 MeV 230 MeV 379 MeV 40 cm Energies1 : 3 : 5 35 cm 20 cm Dipoles: (20 and 40 cm long) B = 0.9 Tesla Alex Bogacz PERLE Mtg, May 26, 2017

Switchyard - Vertical Separation of Arcs (2, 4, 6) 40 cm Energies1 : 2 : 3 25 cm 155 MeV 304 MeV 453 MeV Dipoles: (30 cm long) B = 1.3 Tesla Alex Bogacz PERLE Mtg, May 26, 2017

Vertical Spreaders - Optics Spr. 1 (80 MeV) Spr. 5 (379 MeV) 4.27981 20 1 -1 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 4.023 20 1 -1 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y vertical step I vertical step II vertical chicane Alex Bogacz PERLE Mtg, May 26, 2017

Arc 1 Optics (80 MeV) Isochronous Arc 2-step vert. Recombiner 15.71 20 2 -3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y Isochronous Arc pathlength: 42 × lRF 2-step vert. Spreader 2-step vert. Recombiner 1800 Arc Spr. dipoles: 4 450 bends L = 20 cm B = 9.5 kGauss Arc dipoles : 4450 bends L = 45.6 cm B = 4.5 kGauss Rec. dipoles: 4 450 bends L = 20 cm B = 9.5 kGauss quads: L = 10 cm G  1 kGauss/cm Alex Bogacz PERLE Mtg, May 26, 2017

Magnet Inventory

Alex Bogacz PERLE Mtg, May 26, 2017

114 100 150 28 Alex Bogacz PERLE Mtg, May 26, 2017

Summary PERLE@Orsay (450 MeV) Multi-pass linac Optics in ER mode ‘lean design’, fewer magnet varieties, 1.3 Tesla curved bends Multi-pass linac Optics in ER mode Linear lattice: 3-pass ‘up’ + 3-pass ‘down’ Arc Optics Choice Flexible Momentum Compaction Optics Complete Arc Architecture Vertical switchyard Matching sections: Linac-Switchyard-Arc ‘First cut’ linear lattice design Two Linacs + Six Arcs Magnet inventory Dipole and Quad design (Pierre Thonet and Cynthia Vallerand) Alex Bogacz PERLE Mtg, May 26, 2017