EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2003

Slides:



Advertisements
Similar presentations
Ideal Junction Theory Assumptions Ex = 0 in the chg neutral reg. (CNR)
Advertisements

EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
Lecture 12 OUTLINE pn Junction Diodes (cont’d) Junction breakdown
PN-junction diode: I-V characteristics
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Lecture 13 OUTLINE pn Junction Diodes (cont’d) Charge control model
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 16 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 13 - Fall 2010
Quasi-Fermi Levels The equilibrium EF is split into the quasi-Fermi
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2010
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 - Fall 2010
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2009
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 12 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011
Lecture #21 ANNOUNCEMENTS No coffee hour today 
Professor Ronald L. Carter
Professor Ronald L. Carter
EE130/230A Discussion 5 Peng Zheng.
pn Junction Diodes: I-V Characteristics
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2009
Professor Ronald L. Carter
Lecture 11 OUTLINE pn Junction Diodes (cont’d) Narrow-base diode
pn Junction Electrostatics
Professor Ronald L. Carter
pn Junction Electrostatics
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
EE 5340 Semiconductor Device Theory Lecture 13 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2003
Lecture 11 OUTLINE pn Junction Diodes (cont’d) Narrow-base diode
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Lecture 9 OUTLINE pn Junction Diodes Electrostatics (step junction)
Lecture 12 OUTLINE pn Junction Diodes (cont’d)
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 - Fall 2003
Lecture 13 OUTLINE pn Junction Diodes (cont’d) Charge control model
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Lecture 12 OUTLINE pn Junction Diodes (cont’d)
Lecture 12 OUTLINE pn Junction Diodes (cont’d) Junction breakdown
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2009
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 13 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 17 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 16 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 11 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 13 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011
Professor Ronald L. Carter
Presentation transcript:

EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2003 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc L 14 Oct 9

Project Comments- Forward derivative A plot of r  dV/d[ln(C)] vs. V has slope = -1/M, and intercept = VJ/M Forward der. of data gives ri’ = dV/d(ln(C))=[Vi+1-Vi]/[ln(Ci+1)-ln(Ci)], at Vi’ = [Vi+1+Vi]/2 L 14 Oct 9

Project Comments- Central derivative A plot of r  dV/d[ln(C)] vs. V has slope = -1/M, and intercept = VJ/M Central der. of data gives ri’ = dV/d(ln(C))=[Vi+1-Vi-1]/[ln(Ci+1)-ln(Ci-1)], at Vi’ = [Vi+1-Vi-1]/2 (= Vi only if all DV are equal. L 14 Oct 9

Project Comments- Backward derivative A plot of r  dV/d[ln(C)] vs. V has slope = -1/M, and intercept = VJ/M Backward der. of data gives ri’ = dV/d(ln(C))=[Vi-Vi-1]/[ln(Ci)-ln(Ci-1)], at Vi’ = [Vi+Vi-1]/2 L 14 Oct 9

Choosing the data range for r vs. V L 14 Oct 9

Choosing the data range for r vs. V L 14 Oct 9

Minority hole lifetimes, taken from Shur** p. 101. L 14 Oct 9

Minority electron lifetimes, taken from Shur** p. 101. L 14 Oct 9

Lifetimes from data vs. that used in simulators Minority electron lifetimes, taken from Shur** p. 101. L 14 Oct 9

The Continuity Equation (cont.) L 14 Oct 9

Review of depletion approximation pp << ppo, -xp < x < 0 nn << nno, 0 < x < xn 0 > Ex > -2Vbi/W, in DR (-xp < x < xn) pp=ppo=Na & np=npo= ni2/Na, -xpc< x < -xp nn=nno=Nd & pn=pno= ni2/Nd, xn < x < xnc qVbi Ec EFp EFn EFi Ev x -xpc -xp xn xnc L 14 Oct 9

Review of D. A. (cont.) Ex -xpc -xp xn xnc x -Emax L 14 Oct 9

Forward Bias Energy Bands Ev Ec EFi xn xnc -xpc -xp q(Vbi-Va) EFP EFN qVa x Imref, EFn Imref, EFp L 14 Oct 9

Law of the junction: “Remember to follow the minority carriers” L 14 Oct 9

Law of the junction (cont.) L 14 Oct 9

Law of the junction (cont.) L 14 Oct 9

Injection Conditions L 14 Oct 9

Ideal Junction Theory Assumptions Ex = 0 in the chg neutral reg. (CNR) MB statistics are applicable Neglect gen/rec in depl reg (DR) Low level injections apply so that dnp < ppo for -xpc < x < -xp, and dpn < nno for xn < x < xnc Steady State conditions L 14 Oct 9

Apply the Continuity Eqn in CNR Ideal Junction Theory (cont.) Apply the Continuity Eqn in CNR L 14 Oct 9

Ideal Junction Theory (cont.) L 14 Oct 9

Ideal Junction Theory (cont.) L 14 Oct 9

Diffusion length model L = (Dt)1/2 Diffusion Coeff. is Pierret* model L 14 Oct 9

Excess minority carrier distr fctn L 14 Oct 9

Forward Bias Energy Bands Ev Ec EFi xn xnc -xpc -xp q(Vbi-Va) EFP EFN qVa x Imref, EFn Imref, EFp L 14 Oct 9

Carrier Injection ln(carrier conc) ln Na ln Nd ln ni ~Va/Vt ~Va/Vt ln ni2/Nd ln ni2/Na x -xpc -xp xnc xn L 14 Oct 9

References * Semiconductor Device Fundamentals, by Pierret, Addison-Wesley, 1996 ** Physics of Semiconductor Devices, M. Shur, Wiley. L 14 Oct 9