COP5577: Principles of Data Mining Fall 2008 Lecture 4 Dr

Slides:



Advertisements
Similar presentations
Data Mining Classification: Basic Concepts,
Advertisements

CHAPTER 9: Decision Trees
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Part I Introduction to Data Mining by Tan,
Bab /44 Bab 4 Classification: Basic Concepts, Decision Trees & Model Evaluation Part 1 Classification With Decision tree.
Classification: Definition Given a collection of records (training set ) –Each record contains a set of attributes, one of the attributes is the class.
Statistics 202: Statistical Aspects of Data Mining
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Classification: Definition l Given a collection of records (training set) l Find a model.
1 Data Mining Classification Techniques: Decision Trees (BUSINESS INTELLIGENCE) Slides prepared by Elizabeth Anglo, DISCS ADMU.
Decision Tree.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Classification Kuliah 4 4/29/2015. Classification: Definition  Given a collection of records (training set )  Each record contains a set of attributes,
Data Mining Classification This lecture node is modified based on Lecture Notes for Chapter 4/5 of Introduction to Data Mining by Tan, Steinbach, Kumar,
Classification Techniques: Decision Tree Learning
Data Mining Classification: Naïve Bayes Classifier
Classification: Basic Concepts and Decision Trees.
Lecture Notes for Chapter 4 Introduction to Data Mining
Classification: Decision Trees, and Naïve Bayes etc. March 17, 2010 Adapted from Chapters 4 and 5 of the book Introduction to Data Mining by Tan, Steinbach,
Lecture outline Classification Decision-tree classification.
Online Algorithms – II Amrinder Arora Permalink:
CSci 8980: Data Mining (Fall 2002)
1 BUS 297D: Data Mining Professor David Mease Lecture 5 Agenda: 1) Go over midterm exam solutions 2) Assign HW #3 (Due Thurs 10/1) 3) Lecture over Chapter.
© Vipin Kumar CSci 8980 Fall CSci 8980: Data Mining (Fall 2002) Vipin Kumar Army High Performance Computing Research Center Department of Computer.
Lecture 5 (Classification with Decision Trees)
Example of a Decision Tree categorical continuous class Splitting Attributes Refund Yes No NO MarSt Single, Divorced Married TaxInc NO < 80K > 80K.
Classification.
DATA MINING : CLASSIFICATION. Classification : Definition  Classification is a supervised learning.  Uses training sets which has correct answers (class.
DATA MINING LECTURE 9 Classification Basic Concepts Decision Trees.
1 Data Mining Lecture 3: Decision Trees. 2 Classification: Definition l Given a collection of records (training set ) –Each record contains a set of attributes,
Chapter 4 Classification. 2 Classification: Definition Given a collection of records (training set ) –Each record contains a set of attributes, one of.
Classification. 2 Classification: Definition  Given a collection of records (training set ) Each record contains a set of attributes, one of the attributes.
Classification Basic Concepts, Decision Trees, and Model Evaluation
Lecture 7. Outline 1. Overview of Classification and Decision Tree 2. Algorithm to build Decision Tree 3. Formula to measure information 4. Weka, data.
Modul 6: Classification. 2 Classification: Definition  Given a collection of records (training set ) Each record contains a set of attributes, one of.
Review - Decision Trees
Decision Trees Jyh-Shing Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation COSC 4368.
Longin Jan Latecki Temple University
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Chapter 6 Classification and Prediction Dr. Bernard Chen Ph.D. University of Central Arkansas.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Classification: Basic Concepts, Decision Trees. Classification: Definition l Given a collection of records (training set ) –Each record contains a set.
Decision Trees Example of a Decision Tree categorical continuous class Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Splitting.
Classification and Prediction
Lecture Notes for Chapter 4 Introduction to Data Mining
1 Illustration of the Classification Task: Learning Algorithm Model.
Big Data Analysis and Mining Qinpei Zhao 赵钦佩 2015 Fall Decision Tree.
1 Classification: predicts categorical class labels (discrete or nominal) classifies data (constructs a model) based on the training set and the values.
Classification: Basic Concepts, Decision Trees. Classification Learning: Definition l Given a collection of records (training set) –Each record contains.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining By Tan, Steinbach,
Introduction to Data Mining Clustering & Classification Reference: Tan et al: Introduction to data mining. Some slides are adopted from Tan et al.
DECISION TREES An internal node represents a test on an attribute.
Lecture Notes for Chapter 4 Introduction to Data Mining
Chapter 6 Classification and Prediction
Data Science Algorithms: The Basic Methods
Classification Decision Trees
EECS 647: Introduction to Database Systems
Data Mining Classification: Basic Concepts and Techniques
Classification and Prediction
Lecture Notes for Chapter 4 Introduction to Data Mining
Classification Basic Concepts, Decision Trees, and Model Evaluation
Machine Learning” Notes 2
Data Mining: Concepts and Techniques
Basic Concepts and Decision Trees
Classification and Prediction
آبان 96. آبان 96 Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan,
CSCI N317 Computation for Scientific Applications Unit Weka
Statistical Learning Dong Liu Dept. EEIS, USTC.
©Jiawei Han and Micheline Kamber
COSC 4368 Intro Supervised Learning Organization
Presentation transcript:

COP5577: Principles of Data Mining Fall 2008 Lecture 4 Dr COP5577: Principles of Data Mining Fall 2008 Lecture 4 Dr. Tao Li Florida International University

Lecture Notes for Chapter 4 Introduction to Data Mining Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach, Kumar

Classification: Definition Given a collection of records (training set ) Each record contains a set of attributes, one of the attributes is the class. Find a model for class attribute as a function of the values of other attributes. Goal: previously unseen records should be assigned a class as accurately as possible. A test set is used to determine the accuracy of the model. Usually, the given data set is divided into training and test sets, with training set used to build the model and test set used to validate it.

Illustrating Classification Task

Classification—A Two-Step Process Model construction: describing a set of predetermined classes Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute The set of tuples used for model construction is training set The model is represented as classification rules, decision trees, or mathematical formulae Model usage: for classifying future or unknown objects Estimate accuracy of the model The known label of test sample is compared with the classified result from the model Accuracy rate is the percentage of test set samples that are correctly classified by the model Test set is independent of training set, otherwise over-fitting will occur If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known

Classification Process (1): Model Construction Algorithms Training Data Classifier (Model) IF rank = ‘professor’ OR years > 6 THEN tenured = ‘yes’

Classification Process (2): Use the Model in Prediction Classifier Testing Data Unseen Data (Jeff, Professor, 4) Tenured?

Examples of Classification Task Predicting tumor cells as benign or malignant Classifying credit card transactions as legitimate or fraudulent Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil Categorizing news stories as finance, weather, entertainment, sports, etc

Classification Techniques Decision Tree based Methods Rule-based Methods Memory based reasoning Neural Networks Naïve Bayes and Bayesian Belief Networks Support Vector Machines

Classification vs. Prediction predicts categorical class labels (discrete or nominal) classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data Prediction: models continuous-valued functions, i.e., predicts unknown or missing values Typical Applications credit approval target marketing medical diagnosis treatment effectiveness analysis

Classification Accuracy: Estimating Error Rates Partition: Training-and-testing use two independent data sets, e.g., training set (2/3), test set(1/3) used for data set with large number of samples Cross-validation divide the data set into k subsamples use k-1 subsamples as training data and one sub- sample as test data—k-fold cross-validation for data set with moderate size Bootstrapping (leave-one-out) for small size data

Supervised vs. Unsupervised Learning Supervised learning (classification) Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations New data is classified based on the training set Unsupervised learning (clustering) The class labels of training data is unknown Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Example of a Decision Tree categorical continuous class Splitting Attributes Refund Yes No NO MarSt Single, Divorced Married TaxInc NO < 80K > 80K NO YES Training Data Model: Decision Tree

Another Example of Decision Tree categorical categorical continuous class MarSt Single, Divorced Married NO Refund No Yes NO TaxInc < 80K > 80K NO YES There could be more than one tree that fits the same data!

Decision Tree Classification Task

Apply Model to Test Data Start from the root of tree. Refund MarSt TaxInc YES NO Yes No Married Single, Divorced < 80K > 80K

Apply Model to Test Data Refund MarSt TaxInc YES NO Yes No Married Single, Divorced < 80K > 80K

Apply Model to Test Data Refund Yes No NO MarSt Single, Divorced Married TaxInc NO < 80K > 80K NO YES

Apply Model to Test Data Refund Yes No NO MarSt Single, Divorced Married TaxInc NO < 80K > 80K NO YES

Apply Model to Test Data Refund Yes No NO MarSt Single, Divorced Married TaxInc NO < 80K > 80K NO YES

Apply Model to Test Data Refund Yes No NO MarSt Married Assign Cheat to “No” Single, Divorced TaxInc NO < 80K > 80K NO YES

Decision Tree Classification Task

Decision Tree Induction Many Algorithms: Hunt’s Algorithm (one of the earliest) CART ID3, C4.5 SLIQ,SPRINT

General Structure of Hunt’s Algorithm Let Dt be the set of training records that reach a node t General Procedure: If Dt contains records that belong the same class yt, then t is a leaf node labeled as yt If Dt is an empty set, then t is a leaf node labeled by the default class, yd If Dt contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset. Dt ?

Hunt’s Algorithm Refund Refund Refund Marital Marital Status Status Don’t Cheat Yes No Don’t Cheat Refund Don’t Cheat Yes No Marital Status Single, Divorced Married Refund Don’t Cheat Yes No Marital Status Single, Divorced Married Taxable Income < 80K >= 80K

Tree Induction Greedy strategy. Split the records based on an attribute test that optimizes certain criterion. Issues Determine how to split the records How to specify the attribute test condition? How to determine the best split? Determine when to stop splitting

Tree Induction Greedy strategy. Split the records based on an attribute test that optimizes certain criterion. Issues Determine how to split the records How to specify the attribute test condition? How to determine the best split? Determine when to stop splitting

How to Specify Test Condition? Depends on attribute types Nominal Ordinal Continuous Depends on number of ways to split 2-way split Multi-way split

Splitting Based on Nominal Attributes Multi-way split: Use as many partitions as distinct values. Binary split: Divides values into two subsets. Need to find optimal partitioning. CarType Family Sports Luxury CarType {Sports, Luxury} {Family} CarType {Family, Luxury} {Sports} OR

Splitting Based on Ordinal Attributes Multi-way split: Use as many partitions as distinct values. Binary split: Divides values into two subsets. Need to find optimal partitioning. What about this split? Size Small Medium Large Size {Small, Medium} {Large} Size {Medium, Large} {Small} OR Size {Small, Large} {Medium}

Splitting Based on Continuous Attributes Different ways of handling Discretization to form an ordinal categorical attribute Static – discretize once at the beginning Dynamic – ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering. Binary Decision: (A < v) or (A  v) consider all possible splits and finds the best cut can be more compute intensive

Splitting Based on Continuous Attributes

Tree Induction Greedy strategy. Split the records based on an attribute test that optimizes certain criterion. Issues Determine how to split the records How to specify the attribute test condition? How to determine the best split? Determine when to stop splitting

How to determine the Best Split Before Splitting: 10 records of class 0, 10 records of class 1 Which test condition is the best?

How to determine the Best Split Greedy approach: Nodes with homogeneous class distribution are preferred Need a measure of node impurity: Non-homogeneous, High degree of impurity Homogeneous, Low degree of impurity

Measures of Node Impurity Gini Index Entropy Misclassification error

How to Find the Best Split Before Splitting: M0 A? B? Yes No Yes No Node N1 Node N2 Node N3 Node N4 M1 M2 M3 M4 M12 M34 Gain = M0 – M12 vs M0 – M34

Examples Using Information Gain

Information Gain in a Nutshell typically yes/no

Playing Tennis

Choosing an Attribute We want to split our decision tree on one of the attributes There are four attributes to choose from: Outlook Temperature Humidity Wind

How to Choose an Attribute Want to calculated the information gain of each attribute Let us start with Outlook What is Entropy(S)? -5/14*log2(5/14) – 9/14*log2(9/14) = Entropy(5/14,9/14) = 0.9403

Outlook Continued The expected conditional entropy is: 5/14 * Entropy(3/5,2/5) + 4/14 * Entropy(1,0) + 5/14 * Entropy(3/5,2/5) = 0.6935 So IG(Outlook) = 0.9403 – 0.6935 = 0.2468

Temperature Now let us look at the attribute Temperature The expected conditional entropy is: 4/14 * Entropy(2/4,2/4) + 6/14 * Entropy(4/6,2/6) + 4/14 * Entropy(3/4,1/4) = 0.9111 So IG(Temperature) = 0.9403 – 0.9111 = 0.0292

Humidity Now let us look at attribute Humidity What is the expected conditional entropy? 7/14 * Entropy(4/7,3/7) + 7/14 * Entropy(6/7,1/7) = 0.7885 So IG(Humidity) = 0.9403 – 0.7885 = 0.1518

Wind What is the information gain for wind? Expected conditional entropy: 8/14 * Entropy(6/8,2/8) + 6/14 * Entropy(3/6,3/6) = 0.8922 IG(Wind) = 0.9403 – 0.8922 = 0.048

Information Gains Outlook 0.2468 Temperature 0.0292 Humidity 0.1518 Wind 0.0481 We choose Outlook since it has the highest information gain

Decision Tree So Far Now must decide what to do when Outlook is: Sunny Overcast Rain

Sunny Branch Examples to classify: Temperature, Humidity, Wind, Tennis Hot, High, Weak, no Hot, High, Strong, no Mild, High, Weak, no Cool, Normal, Weak, yes Mild, Normal, Strong, yes

Splitting Sunny on Temperature What is the Entropy of Sunny? Entropy(2/5,3/5) = 0.9710 How about the expected utility? 2/5 * Entropy(1,0) + 2/5 * Entropy(1/2,1/2) + 1/5 * Entropy(1,0) = 0.4000 IG(Temperature) = 0.9710 – 0.4000 = 0.5710

Splitting Sunny on Humidity The expected conditional entropy is 3/5 * Entropy(1,0) + 2/5 * Entropy(1,0) = 0 IG(Humidity) = 0.9710 – 0 = 0.9710

Considering Wind? Do we need to consider wind as an attribute? No – it is not possible to do any better than an expected entropy of 0; i.e. humidity must maximize the information gain

New Tree

What if it is Overcast? All examples indicate yes So there is no need to further split on an attribute The information gain for any attribute would have to be 0 Just write yes at this node

New Tree

What about Rain? Let us consider attribute temperature First, what is the entropy of the data? Entropy(3/5,2/5) = 0.9710 Second, what is the expected conditional entropy? 3/5 * Entropy(2/3,1/3) + 2/5 * Entropy(1/2,1/2) = 0.9510 IG(Temperature) = 0.9710 – 0.9510 = 0.020

Or perhaps humidity? What is the expected conditional entropy? 3/5 * Entropy(2/3,1/3) + 2/5 * Entropy(1/2,1/2) = 0.9510 (the same) IG(Humidity) = 0.9710 – 0.9510 = 0.020 (again, the same)

Now consider wind Expected conditional entropy: 3/5*Entropy(1,0) + 2/5*Entropy(1,0) = 0 IG(Wind) = 0.9710 – 0 = 0.9710 Thus, we split on Wind

Split Further?

Final Tree

Measure of Impurity: GINI Gini Index for a given node t : (NOTE: p( j | t) is the relative frequency of class j at node t). Maximum (1 - 1/nc) when records are equally distributed among all classes, implying least interesting information Minimum (0.0) when all records belong to one class, implying most interesting information

Examples for computing GINI P(C1) = 0/6 = 0 P(C2) = 6/6 = 1 Gini = 1 – P(C1)2 – P(C2)2 = 1 – 0 – 1 = 0 P(C1) = 1/6 P(C2) = 5/6 Gini = 1 – (1/6)2 – (5/6)2 = 0.278 P(C1) = 2/6 P(C2) = 4/6 Gini = 1 – (2/6)2 – (4/6)2 = 0.444

Splitting Based on GINI Used in CART, SLIQ, SPRINT. When a node p is split into k partitions (children), the quality of split is computed as, where, ni = number of records at child i, n = number of records at node p.

Binary Attributes: Computing GINI Index Splits into two partitions Effect of Weighing partitions: Larger and Purer Partitions are sought for. B? Yes No Node N1 Node N2 Gini(N1) = 1 – (5/6)2 – (2/6)2 = 0.194 Gini(N2) = 1 – (1/6)2 – (4/6)2 = 0.528 Gini(Children) = 7/12 * 0.194 + 5/12 * 0.528 = 0.333

Categorical Attributes: Computing Gini Index For each distinct value, gather counts for each class in the dataset Use the count matrix to make decisions Multi-way split Two-way split (find best partition of values)

Continuous Attributes: Computing Gini Index Use Binary Decisions based on one value Several Choices for the splitting value Number of possible splitting values = Number of distinct values Each splitting value has a count matrix associated with it Class counts in each of the partitions, A < v and A  v Simple method to choose best v For each v, scan the database to gather count matrix and compute its Gini index Computationally Inefficient! Repetition of work.

Continuous Attributes: Computing Gini Index... For efficient computation: for each attribute, Sort the attribute on values Linearly scan these values, each time updating the count matrix and computing gini index Choose the split position that has the least gini index Split Positions Sorted Values

Alternative Splitting Criteria based on INFO Entropy at a given node t: (NOTE: p( j | t) is the relative frequency of class j at node t). Measures homogeneity of a node. Maximum (log nc) when records are equally distributed among all classes implying least information Minimum (0.0) when all records belong to one class, implying most information Entropy based computations are similar to the GINI index computations

Examples for computing Entropy P(C1) = 0/6 = 0 P(C2) = 6/6 = 1 Entropy = – 0 log 0 – 1 log 1 = – 0 – 0 = 0 P(C1) = 1/6 P(C2) = 5/6 Entropy = – (1/6) log2 (1/6) – (5/6) log2 (1/6) = 0.65 P(C1) = 2/6 P(C2) = 4/6 Entropy = – (2/6) log2 (2/6) – (4/6) log2 (4/6) = 0.92

Splitting Based on INFO... Information Gain: Parent Node, p is split into k partitions; ni is number of records in partition i Measures Reduction in Entropy achieved because of the split. Choose the split that achieves most reduction (maximizes GAIN) Used in ID3 and C4.5 Disadvantage: Tends to prefer splits that result in large number of partitions, each being small but pure.

Splitting Based on INFO... Gain Ratio: Parent Node, p is split into k partitions ni is the number of records in partition i Adjusts Information Gain by the entropy of the partitioning (SplitINFO). Higher entropy partitioning (large number of small partitions) is penalized! Used in C4.5 Designed to overcome the disadvantage of Information Gain

Splitting Criteria based on Classification Error Classification error at a node t : Measures misclassification error made by a node. Maximum (1 - 1/nc) when records are equally distributed among all classes, implying least interesting information Minimum (0.0) when all records belong to one class, implying most interesting information

Examples for Computing Error P(C1) = 0/6 = 0 P(C2) = 6/6 = 1 Error = 1 – max (0, 1) = 1 – 1 = 0 P(C1) = 1/6 P(C2) = 5/6 Error = 1 – max (1/6, 5/6) = 1 – 5/6 = 1/6 P(C1) = 2/6 P(C2) = 4/6 Error = 1 – max (2/6, 4/6) = 1 – 4/6 = 1/3

Comparison among Splitting Criteria For a 2-class problem:

Misclassification Error vs Gini Yes No Node N1 Node N2 Gini(N1) = 1 – (3/3)2 – (0/3)2 = 0 Gini(N2) = 1 – (4/7)2 – (3/7)2 = 0.489 Gini(Children) = 3/10 * 0 + 7/10 * 0.489 = 0.342 Gini improves !!

Tree Induction Greedy strategy. Split the records based on an attribute test that optimizes certain criterion. Issues Determine how to split the records How to specify the attribute test condition? How to determine the best split? Determine when to stop splitting

Stopping Criteria for Tree Induction Stop expanding a node when all the records belong to the same class Stop expanding a node when all the records have similar attribute values Early termination (to be discussed later)

Decision Tree Based Classification Advantages: Inexpensive to construct Extremely fast at classifying unknown records Easy to interpret for small-sized trees Accuracy is comparable to other classification techniques for many simple data sets

Example: C4.5 Simple depth-first construction. Uses Information Gain Sorts Continuous Attributes at each node. Needs entire data to fit in memory. Unsuitable for Large Datasets. Needs out-of-core sorting. You can download the software from: http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz

Practical Issues of Classification Underfitting and Overfitting Missing Values Costs of Classification

Underfitting and Overfitting Underfitting: when model is too simple, both training and test errors are large