3-BC Working Points for 0.5 and 1.0 nC

Slides:



Advertisements
Similar presentations
First Steps XFEL S2E with CSRtrack Convert elegant particlefile upstream of BC-3 into CSRtrack input CSRtrack results.
Advertisements

Compression Scenarios for the European XFEL Charge and Bunch Length Scope Igor Zagorodnov 1st Meeting of the European XFEL Accelerator Consortium DESY,
Paul Emma SLAC January 14, 2002 BERLIN CSR Benchmark Test-Case Results CSR Workshop.
Nominal and no CSR (R 56-1 = 55 mm, R 56-2 = 59 mm, R 56-3 = 0) L1 phase = 21 deg, V 3.9 = 55 MV CSR OFF BC3 OFF Elegant Tracking  z1 = mm (post.
BC System – Review Options ● BC2 working point (energy-charge-compr.) ● 2BC (rf-rf-bc-rf-bc-rf) ● table: 2BC (rf-rf-bc-rf-bc-rf) dogleg + 2BC (rf-dog-rf-rf-bc-rf-bc-rf)
ILC Accelerator School Kyungpook National University
Cavity Field Maps (TESLA & 3 rd Harmonic Cavity) Undulator Wakes Estimation of CSR Effects for FLASH2HGHG.
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
Bunch compressors ILC Accelerator School May Eun-San Kim Kyungpook National University.
1 ILC Bunch compressor Damping ring ILC Summer School August Eun-San Kim KNU.
1 Preliminary Analysis of GTF Longitudinal Emittance Experiment D. Dowell SLAC July 18, 2001.
RF Tweak 5 Tool for FLASH and XFEL
Bunch compressor design for eRHIC Yichao Jing and Vladimir Litvinenko FLS2012, Newport News, VA 3/8/2012.
LCLS-II Transverse Tolerances Tor Raubenheimer May 29, 2013.
M. Venturini, Sept. 26, 2013, SLAC 1 ─ M. Venturini, Sept. 26, 2013, SLAC Marco Venturini LBNL Sept. 26, 2013 THE LATE NGLS: OVERVIEW OF LINAC DESIGN,
Collective Effects in the Driver of the Wisconsin Free-Electron Laser (WiFEL) Robert Bosch, Kevin Kleman and the WiFEL team Synchrotron Radiation Center.
Yauhen Kot Current Status of XFEL Simulations.
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
1 Muon acceleration - amplitude effects in non-scaling FFAG - Shinji Machida CCLRC/RAL/ASTeC 26 April, ffag/machida_ ppt.
Max Cornacchia, Paul Emma Stanford Linear Accelerator Center Max Cornacchia, Paul Emma Stanford Linear Accelerator Center  Proposed by M. Cornacchia (Nov.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
16 August 2005PT for US BC Task Force1 Two Stage Bunch Compressor Proposal Snowmass WG1 “It’s the latest wave That you’ve been craving for The old ideal.
A bunch compressor design and several X-band FELs Yipeng Sun, ARD/SLAC , LCLS-II meeting.
1 Franz-Josef Decker 1 Multi-Bunch Operation for LCLS Franz-Josef Decker March 17, Definitions and goals multi-bunch within.
Beam Dynamics Meeting Bolko Beutner, DESY Summary of new FLASH CSR studies Bolko Beutner, DESY Beam Dynamics Meeting
1 Alternative Bunch Compressor 30 th Sep KNU Eun-San Kim.
T. Limberg Position of the 3rd Harmonic System. Injector (with first Bunch Compression Stage) 2 European XFEL MAC May 2010 T. Limberg.
J. Wu J. Wu working with T.O. Raubenheimer, J. Qiang (LBL), LCLS-II Accelerator Physics meeting April 11, 2012 Study on the BC1 Energy Set Point LCLS-II.
3D codes: TraFiC4 and CSRtrack Torsten Limberg DESY Zeuthen 2003.
NLC - The Next Linear Collider Project Tor Raubenheimer Beam Delivery System Design Differences American Linear Collider Physics Meeting SLAC January 8.
‘S2E’ Study of Linac for TESLA XFEL P. Emma SLAC  Tracking  Comparison to LCLS  Re-optimization  Tolerances  Jitter  CSR Effects.
S2E (start-to-end) Simulations at DESY T. Limberg TESLA Collaboration Meeting in Frascati, May 2003.
Injector Options for CLIC Drive Beam Linac Avni Aksoy Ankara University.
J. Wu J. Wu working with T.O. Raubenheimer LCLS-II Accelerator Physics meeting May 09, 2012 Study on the BC1 Energy Set Point LCLS-II Accel. Phys., J.
Lessons Learned From the First Operation of the LCLS for Users Presented by Josef Frisch For the LCLS March 14, 2010.
Computational Needs for the XFEL Martin Dohlus DESY, Hamburg.
A. Zholents (ANL) and M. Zolotorev (LBNL)
X-band Based FEL proposal
A single-shot method for measuring fs bunches in linac-based FELs Z. Huang, K. Bane, Y. Ding, P. Emma.
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz NuFact’08, Valencia, Spain, July 4, 2008 Acceleration.
SABER Longitudinal Tracking Studies P. Emma, K. Bane Mar. 1, 2006
Robert Bosch, Kevin Kleman and the WiFEL team
Sara Thorin, MAX IV Laboratory
Cutting Beam Horns in BC1
A. Zholents (ANL) and M. Zolotorev (LBNL)
Review of Application to SASE-FELs
CSR Benchmark Test-Case Results
Progress activities in short bunch compressors
XFEL Bunch Compression System Tuning
Time-Resolved Images of Coherent Synchrotron Radiation Effects
LCLS Longitudinal Feedback and Stability Requirements
Simulation Calculations
Z. Huang LCLS Lehman Review May 14, 2009
Linac/BC1 Commissioning P
Design of Compression and Acceleration Systems Technical Challenges
LCLS Tracking Studies CSR micro-bunching in compressors
Modified Beam Parameter Range
Laser Heater Integration into XFEL. Update.
Gain Computation Sven Reiche, UCLA April 24, 2002
Linac Physics, Diagnostics, and Commissioning Strategy P
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Electron beam dynamics
Linearization of Bunch Compression (2nd order )
Bunch Compression Experiment in VUV-FEL BC3
XFEL Beam Dynamics Activity at CANDLE
some tools for longitudinal phase space
Electron Optics & Bunch Compression
New VUV-FEL Simulation results
S2E Meeting on Yauhen Kot.
Presentation transcript:

3-BC Working Points for 0.5 and 1.0 nC tool/method – how to find working points (1D with CSR) example (1nC) example (0.5nC) some remarks

Tool / Method E0 E1 E2 rf0a rf0b bc0 rf1 bc1 rf2 bc2 linear parameters: e0’ q56_0 e1’ q56_1 e2’ q56_2 non-linear param.: (knobs) e0’’ e0’’’ my definition:

Tool / Method E0 E1 E2 rf0a rf0b bc0 rf1 bc1 rf2 bc2 linear parameters: e0’ q56_0 e1’ q56_1 e2’ q56_2 C0 C1 2 Ctot non-linear param.: (knobs) e0’’ e0’’’

Tool / Method E0 E1 E2 rf0a rf0b bc0 rf1 bc1 rf2 bc2 in a b c d e out 1. track without self effects: in  a,b,c,d,e,out in  a,b,c,d,e,out (‘in’ with laser heater!) 2. track with SC&wakes: in  a1 (Igor’s SC&wakes) re-adjust rf0 parameters: E0; rms{a1-a}=min in  a2,b2,c1 re-adjust rf1 parameters: E1; rms{c1-c}=min in  a2,b2,c2,d2,e1 re-adjust rf2 parameters: E2; rms{e1-e}=min in  a2,b2,c2,d2,e2,out1 procedure takes about 1 min total compression not quite perfect <x1-x>≠0 … in principle: modify e2’ or q45_2 few iterations to adjust e0’’ and e0’’’

Tool / Method E0 E1 E2 rf0a rf0b bc0 rf1 bc1 rf2 bc2 in a b c d e out 3. track with …&…&CSR: in  a1 re-adjust rf0 parameters: E0; rms{a1-a}=min in  a2(1d-CSRtrack)b2,c1 re-adjust rf1 parameters: E1; rms{c1-c}=min in  a2,b2,c2 (1d-CSRtrack) d2,e1 re-adjust rf2 parameters: E2; rms{e1-e}=min in  a2,b2,c2,d2,e2 (1d-CSRtrack) out1 procedure takes about 30 min total compression not quite perfect few iterations to adjust e0’’ and e0’’’

(1d-CSRtrack) (matlab-controller) in = longitudinal phase space create lattice with design q56  csrtrk.in create artificial transverse phase space (n  1 µm, initial , focus at last magnet) run CSRtrack {look for transverse properties} extract longitudinal phase space  out

example (1nC) without self effects C0=1.80; C1=19.0/C0; q56_0=0.040; q56_1=0.110; q56_2=0.027764039; without self effects e0ss =0.0; e0sss=0.0; e0ss =0.5; e0sss=0.0; e0ss =1.0; e0sss=0.0;

example (1nC) without self effects C0=1.80; C1=19.0/C0; q56_0=0.040; q56_1=0.110; q56_2=0.027764039; without self effects e0ss =0.75; e0sss=0.0; e0ss =0.82; e0sss=0.0; e0ss =0.88; e0sss=0.0;

example (1nC) with wakes, without CSR C0=1.80; C1=19.0/C0; q56_0=0.040; q56_1=0.110; q56_2=0.027764039; with wakes, without CSR e0ss =0.75; e0sss=0.0; e0ss =0.82; e0sss=0.0; e0ss =0.88; e0sss=0.0;

example (1nC) with wakes & CSR C0=1.80; C1=19.0/C0; C2=100.0/(C0*C1); q56_0=0.040; q56_1=0.110; q56_2=0.027764039; with wakes & CSR e0ss =0.68; e0sss=0.0; e0ss =0.75; e0sss=0.0; e0ss =0.82; e0sss=0.0;

example (1nC) with wakes & CSR C0=1.80; C1=19.0/C0; C2=100.0/(C0*C1); q56_0=0.040; q56_1=0.110; q56_2=0.027764039; with wakes & CSR e0ss =0.68; e0sss=-1.0; e0ss =0.68; e0sss=0.0; e0ss =0.68; e0sss=1.0;

example (1nC) with wakes & CSR C0=1.80; C1=19.0/C0; C2=100.0/(C0*C1); q56_0=0.040; q56_1=0.110; q56_2=0.027764039; with wakes & CSR e0ss =0.68; e0sss=0.0;

example (0.5nC) with wakes without CSR with wakes & CSR C0=1.80; C1=19.0/C0; C2=200.0/(C0*C1); q56_0=0.040; q56_1=0.110; q56_2=0.031020315; with wakes without CSR with wakes & CSR e0ss =0.85; e0sss=0.0; e0ss =0.85; e0sss=1.0; e0ss =0.78; e0sss=1.0;

some remarks its is easy to find working points (on the computer) slight rollover of tails same peak current with 0.5 nC: reduce effects before BC3  double BC3 compression tighter tolerances same LH power  twice uncorrelated energy spread same energy spread   increased µB-gain stronger CSR effects in BC3 (steady state, R ~ const, same peak current) effects after BC3 are not decreased / might be increased

1.0nC 0.5nC E is doubled x’ x’

0.5 nC working point same energy spread C_tot*E_LH 1.5 3 2.0 2.5 40 140 60 80 100 120 VB VA q56 C E tol. V3.9 end-chirp noise /mm *100 *1000 MV MV@1 A VA 40 1.8 2.7 0.758 30.2 7.4 73 VB 60 1.8 1.8 0.57 30.9 7.4 125 VA-h 40 1.8 2.7 0.39 31 7.4 130 CB-h 60 1.8 1.8 0.313 32 7.5 190 0.5 nC working point same energy spread C_tot*E_LH