CPE 631 Lecture 12: Branch Prediction

Slides:



Advertisements
Similar presentations
Instruction-Level Parallelism compiler techniques and branch prediction prepared and Instructed by Shmuel Wimer Eng. Faculty, Bar-Ilan University March.
Advertisements

Lecture 8 Dynamic Branch Prediction, Superscalar and VLIW Advanced Computer Architecture COE 501.
Dynamic Branch Prediction (Sec 4.3) Control dependences become a limiting factor in exploiting ILP So far, we’ve discussed only static branch prediction.
Dynamic Branch PredictionCS510 Computer ArchitecturesLecture Lecture 10 Dynamic Branch Prediction, Superscalar, VLIW, and Software Pipelining.
Computer Organization and Architecture (AT70.01) Comp. Sc. and Inf. Mgmt. Asian Institute of Technology Instructor: Dr. Sumanta Guha Slide Sources: Based.
CPE 631: Branch Prediction Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic,
Dynamic Branch Prediction
Copyright 2001 UCB & Morgan Kaufmann ECE668.1 Adapted from Patterson, Katz and Culler © UCB Csaba Andras Moritz UNIVERSITY OF MASSACHUSETTS Dept. of Electrical.
CPE 731 Advanced Computer Architecture ILP: Part II – Branch Prediction Dr. Gheith Abandah Adapted from the slides of Prof. David Patterson, University.
CPE 631: Branch Prediction Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic,
W04S1 COMP s1 Seminar 4: Branch Prediction Slides due to David A. Patterson, 2001.
Lecture 3: Branch Prediction Young Cho Graduate Computer Architecture I.
1 COMP 206: Computer Architecture and Implementation Montek Singh Wed., Oct. 8, 2003 Topic: Instruction-Level Parallelism (Dynamic Branch Prediction)
1 COMP 206: Computer Architecture and Implementation Montek Singh Mon., Oct. 7, 2002 Topic: Instruction-Level Parallelism (Dynamic Branch Prediction)
1 Lecture 7: Out-of-Order Processors Today: out-of-order pipeline, memory disambiguation, basic branch prediction (Sections 3.4, 3.5, 3.7)
EECE476: Computer Architecture Lecture 20: Branch Prediction Chapter extra The University of British ColumbiaEECE 476© 2005 Guy Lemieux.
EENG449b/Savvides Lec /17/04 February 17, 2004 Prof. Andreas Savvides Spring EENG 449bG/CPSC 439bG.
Branch Target Buffers BPB: Tag + Prediction
Computer Architecture Instruction Level Parallelism Dr. Esam Al-Qaralleh.
Branch Prediction Dimitris Karteris Rafael Pasvantidιs.
1 COMP 740: Computer Architecture and Implementation Montek Singh Thu, Feb 19, 2009 Topic: Instruction-Level Parallelism III (Dynamic Branch Prediction)
Dynamic Branch Prediction
EENG449b/Savvides Lec /25/05 March 24, 2005 Prof. Andreas Savvides Spring g449b EENG 449bG/CPSC 439bG.
CIS 429/529 Winter 2007 Branch Prediction.1 Branch Prediction, Multiple Issue.
1 Lecture 7: Branch prediction Topics: bimodal, global, local branch prediction (Sections )
ENGS 116 Lecture 91 Dynamic Branch Prediction and Speculation Vincent H. Berk October 10, 2005 Reading for today: Chapter 3.2 – 3.6 Reading for Wednesday:
CPSC614 Lec 5.1 Instruction Level Parallelism and Dynamic Execution #4: Based on lectures by Prof. David A. Patterson E. J. Kim.
1 Dynamic Branch Prediction. 2 Why do we want to predict branches? MIPS based pipeline – 1 instruction issued per cycle, branch hazard of 1 cycle. –Delayed.
CSCI 6461: Computer Architecture Branch Prediction Instructor: M. Lancaster Corresponding to Hennessey and Patterson Fifth Edition Section 3.3 and Part.
Branch.1 10/14 Branch Prediction Static, Dynamic Branch prediction techniques.
CPE 631 Session 17 Branch Prediction Electrical and Computer Engineering University of Alabama in Huntsville.
Copyright 2016 Csaba Andras MoritzECE668 Power Aware Branching.1 Few slides adapted from Patterson, et al © UCB and Morgan Kaufmann Csaba Andras Moritz.
Yiorgos Makris Professor Department of Electrical Engineering University of Texas at Dallas EE (CE) 6304 Computer Architecture Lecture #13 (10/28/15) Course.
Dynamic Branch Prediction
Instruction-Level Parallelism Dynamic Branch Prediction
Instruction-Level Parallelism and Its Dynamic Exploitation
CS203 – Advanced Computer Architecture
Concepts and Challenges
Dynamic Branch Prediction
COMP 740: Computer Architecture and Implementation
UNIVERSITY OF MASSACHUSETTS Dept
CS5100 Advanced Computer Architecture Advanced Branch Prediction
CS 704 Advanced Computer Architecture
Instruction-Level Parallelism (ILP)
Chapter 4 The Processor Part 4
April 2, 2002 Prof. David E. Culler Computer Science 252 Spring 2002
CMSC 611: Advanced Computer Architecture
So far we have dealt with control hazards in instruction pipelines by:
Dynamic Hardware Branch Prediction
CPE 631: Branch Prediction
Branch statistics Branches occur every 4-6 instructions (16-25%) in integer programs; somewhat less frequently in scientific ones Unconditional branches.
12/2/2018 CPE 631 Lecture 11: Instruction Level Parallelism and Its Dynamic Exploitation Aleksandar Milenković, Electrical and Computer.
Dynamic Branch Prediction
Advanced Computer Architecture
/ Computer Architecture and Design
Pipelining and control flow
Control unit extension for data hazards
So far we have dealt with control hazards in instruction pipelines by:
Lecture 10: Branch Prediction and Instruction Delivery
So far we have dealt with control hazards in instruction pipelines by:
So far we have dealt with control hazards in instruction pipelines by:
Adapted from the slides of Prof
Dynamic Hardware Prediction
So far we have dealt with control hazards in instruction pipelines by:
So far we have dealt with control hazards in instruction pipelines by:
So far we have dealt with control hazards in instruction pipelines by:
So far we have dealt with control hazards in instruction pipelines by:
Loop-Level Parallelism
So far we have dealt with control hazards in instruction pipelines by:
Lecture 7: Branch Prediction, Dynamic ILP
Presentation transcript:

CPE 631 Lecture 12: Branch Prediction 12/19/2019 CPE 631 Lecture 12: Branch Prediction Aleksandar Milenković, milenka@ece.uah.edu Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovich

Case for Branch Prediction Dynamic scheduling increases the amount of ILP => control dependence becomes the limiting factor Multiple issue processors Branches will arrive up to N times faster in an n-issue processor Amdahl’s Law => relative impact of the control stalls will be larger with the lower potential CPI in an n-issue processor What have we done? Static schemes for dealing with branches – compiler optimizes the the branch behavior by scheduling it at compile time 19/12/2019 UAH-CPE631

7 Branch Prediction Schemes 1-bit Branch-Prediction Buffer 2-bit Branch-Prediction Buffer Correlating Branch Prediction Buffer Tournament Branch Predictor Branch Target Buffer Integrated Instruction Fetch Units Return Address Predictors 19/12/2019 UAH-CPE631

Basic Branch Prediction (1) 12/19/2019 Basic Branch Prediction (1) Performance = ƒ(accuracy, cost of misprediction) Branch History Table: a small table of 1-bit values indexed by the lower bits of PC address Says whether or not branch taken last time Useful only to reduce branch delay when it is longer than the time to compute the possible target PC No address check – BHT has no address tags, so the prediction bit may have been put by another branch that has the same low-order bits Prediction is a hint, assumed to be correct – fetching begins in the predicted direction; if it turns out to be wrong, the prediction bit is inverted and stored back 19/12/2019 UAH-CPE631 Aleksandar Milenkovich

Basic Branch Prediction (2) 12/19/2019 Basic Branch Prediction (2) Problem: in a loop, 1-bit BHT will cause 2 mispredictions (avg is 9 iterations before exit): End of loop case, when it exits instead of looping as before First time through loop on next time through code, when it predicts exit instead of looping Only 80% accuracy even if loop 90% of the time Ideally for highly regular branches, the accuracy of predictor = taken branch frequency Solution: use two-bit prediction schemes 19/12/2019 UAH-CPE631 Aleksandar Milenkovich

States in a two-bit prediction scheme 2-bit Scheme States in a two-bit prediction scheme Red: stop, not taken Green: go, taken Adds hysteresis to decision making process T NT Predict Taken Predict Taken T T NT NT Predict Not Taken Predict Not Taken T NT 19/12/2019 UAH-CPE631

Note: Does this scheme help for simple MIPS? BHT Implementation 1) Small, special “cache” accessed with the instruction address during the IF pipe stage 2) Pair of bits attached to each block in the instruction cache and fetched with the instruction How many branches per instruction? Complexity? Instruction is decoded as branch, and branch is predicted as taken => fetch from the target as soon as the PC is known Note: Does this scheme help for simple MIPS? 19/12/2019 UAH-CPE631

How to improve prediction accuracy? BHT Performance Prediction accuracy of 2-bit predictor with 4096 entries is ranging from over 99% to 82% or misprediction rate of 1% to 18% Real impact on performance: prediction accuracy + branch cost + branch frequency How to improve prediction accuracy? Increase the size of the buffer (number of entries) Increase the accuracy for each prediction (increase the number of bits) Both have limited impact! 19/12/2019 UAH-CPE631

Case for Correlating Predictors subi R3, R1, #2 bnez R3, L1 ; b1 add R1, R0, R0 L1: subi R3, R1, #2 bnez R3, L2 ; b2 add R2, R0, R0 L2: sub R3, R1, R2 beqz R3, L3 ; b3 Basic two-bit predictor schemes use recent behavior of a branch to predict its future behavior Improve the prediction accuracy look also at recent behavior of other branches if (aa == 2) aa = 0; if (bb == 2) bb = 0; if (aa != bb) { } b3 is correlated with b1 and b2; If b1 and b2 are both untaken, then b3 will be taken. => Use correlating predictors or two-level predictors. 19/12/2019 UAH-CPE631

An Example if (d == 0) d = 1; if (d == 1) { ... } bnez R1, L1 ; b1 Initial value of d d==0? b1 Value of d before b2 d==1? b2 Yes NT 1 No T 2 bnez R1, L1 ; b1 addi R1, R0, #1 L1: subi R3, R1, #1 bnez R3, L2 ; b2 ... L2: ... => if b1 is NT, then b2 is NT Behavior of one-bit Standard Predictor initialized to not taken; d alternates between 0 and 2. d=? b1 prediction b1 action New b1 prediction b2 prediction b2 action new b2 prediction 2 NT T => All branches are mispredicted 19/12/2019 UAH-CPE631

Prediction if last branch NT Prediction if last branch T An Example Introduce one bit of correlation Each branch has two separate prediction bits: one prediction assuming the last branch executed was not taken, and another prediction assuming it was taken Prediction bits Prediction if last branch NT Prediction if last branch T NT/NT NT NT/T T T/NT T/T Behavior of one-bit predictor with one bit of correlation initialized to NT/NT; Assume last branch NT d=? b1 prediction b1 action New b1 prediction b2 prediction b2 action new b2 prediction 2 NT/NT T T/NT NT/T NT ? NT b1 T b2 => Only misprediction is on the first iteration 19/12/2019 UAH-CPE631

(1, 1) predictor from the previous example Uses the behavior of the last branch to choose from among a pair of one-bit branch predictors (m, n) predictor Uses the behavior of the last m branches to choose from among 2m predictors, each of which is a n-bit predictor for a single branch Global history of the most recent branches can be recorded in an m-bit shift register (each bit records whether a branch is taken or not) 19/12/2019 UAH-CPE631

2-bits per branch local predictors (01 = not taken then taken) Branch address (4 bits) 2-bit global history to choose from among 4 predictors for each branch address 2-bit local predictor 2-bits per branch local predictors Prediction (2, 2) predictor is implemented as a linear memory array that is 2 bits wide; the indexing is done by concatenating the global history bits and the number of required bits from the branch address. 2-bit global branch history (01 = not taken then taken) 19/12/2019 UAH-CPE631

Fair Predictor Comparison Compare predictors that use the same number of state bits number of state bits for (m, n): 2m*n*(number of prediction entries) number of state bits for (0, n): n*(number of prediction entries) Example: How many branch selected entries are in a (2,2) predictor that has a total of 8K state bits => 22*2*(number of entries) = 8K => number of branch selected entries is 1K 19/12/2019 UAH-CPE631

Accuracy of Different Schemes 4096 Entries 2-bit BHT Unlimited Entries 2-bit BHT 1024 Entries (2,2) BHT Frequency of Mispredictions 19/12/2019 UAH-CPE631

Re-evaluating Correlation Several of the SPEC benchmarks have less than a dozen branches responsible for 90% of taken branches: program branch % static # = 90% compress 14% 236 13 eqntott 25% 494 5 gcc 15% 9531 2020 mpeg 10% 5598 532 real gcc 13% 17361 3214 Real programs + OS more like gcc Small benefits beyond benchmarks for correlation? problems with branch aliases? 19/12/2019 UAH-CPE631

Predicated Execution Avoid branch prediction by turning branches into conditionally executed instructions: if (x) then A = B op C else NOP If false, then neither store result nor cause exception Expanded ISA of Alpha, MIPS, PowerPC, SPARC have conditional move; PA-RISC can annul any following instr. IA-64: 64 1-bit condition fields selected so conditional execution of any instruction This transformation is called “if-conversion” Drawbacks to conditional instructions Still takes a clock even if “annulled” Stall if condition evaluated late Complex conditions reduce effectiveness; condition becomes known late in pipeline x A = B op C 19/12/2019 UAH-CPE631

Predicated Execution: An Example if (R1 > R2) { R3 = R1 + R2; R4 = R2 + 1; } else R3 = R1 – R2; SGT R5, R1, R2 BZ L1 ADD R3, R1, R2 ADDI R4, R2, #1 J After L1: SUB R3, R1, R2 After: ... CMP R1, R2 ; set condition code ADD.GT R3, R1, R2 ADDI.GT R4, R2, #1 SUB.LE R3, R1, R2 19/12/2019 UAH-CPE631

Mispredict because either: BHT Accuracy Mispredict because either: Wrong guess for that branch Got branch history of wrong branch when index the table 4096 entry table programs vary from 1% misprediction (nasa7, tomcatv) to 18% (eqntott), with spice at 9% and gcc at 12% For SPEC92, 4096 about as good as infinite table 19/12/2019 UAH-CPE631

Tournament Predictors Motivation for correlating branch predictors is 2-bit predictor failed on important branches; by adding global information, performance improved Tournament predictors use several levels of branch prediction tables together with an algorithm for choosing among predictors Hopes to select right predictor for right branch 19/12/2019 UAH-CPE631

Tournament Predictor in Alpha 21264 (1) 4K 2-bit counters to choose from among a global predictor and a local predictor 0/0 Use Ls Use Gs Use L Use G 1/0 1/1 0/1 Legend: 0/0 – Prediction for L is incorrect, Prediction for G is incorrect 19/12/2019 UAH-CPE631

Tournament Predictor in Alpha 21264 (2) Global predictor also has 4K entries and is indexed by the history of the last 12 branches; each entry in the global predictor is a standard 2-bit predictor 12-bit pattern: ith bit 0 => ith prior branch not taken; ith bit 1 => ith prior branch taken; Local predictor consists of a 2-level predictor: Top level a local history table consisting of 1024 10-bit entries; each 10-bit entry corresponds to the most recent 10 branch outcomes for the entry. 10-bit history allows patterns 10 branches to be discovered and predicted. Next level Selected entry from the local history table is used to index a table of 1K entries consisting a 3-bit saturating counters, which provide the local prediction Total size: 4K*2 + 4K*2 + 1K*10 + 1K*3 = 29K bits! (~180,000 transistors) 19/12/2019 UAH-CPE631

% of predictions from local predictor in Tournament Prediction Scheme 19/12/2019 UAH-CPE631

Accuracy of Branch Prediction 19/12/2019 UAH-CPE631

Accuracy v. Size (SPEC89) 19/12/2019 UAH-CPE631

Branch Target Buffers Prediction in DLX need to know from what address to fetch at the end of IF need to know whether the as-yet-undecoded instruction is branch, and if so, what the next PC should be Branch prediction cache that stores the predicted address for the next instruction after a branch is called a branch target buffer (BTB) 19/12/2019 UAH-CPE631

BTB Branch PC Predicted PC PC of instruction FETCH =? Extra prediction state bits Yes: instruction is branch and use predicted PC as next PC No: branch not predicted, proceed normally (Next PC = PC+4) Keep only predicted-taken branches in BTB, since an untaken branch follows the same strategy as a nonbranch 19/12/2019 UAH-CPE631

Special Case Return Addresses Register Indirect branch hard to predict address SPEC89 85% such branches for procedure return Since stack discipline for procedures, save return address in small buffer that acts like a stack: 8 to 16 entries has small miss rate 19/12/2019 UAH-CPE631

Pitfall: Sometimes bigger and dumber is better 21264 uses tournament predictor (29 Kbits) Earlier 21164 uses a simple 2-bit predictor with 2K entries (or a total of 4 Kbits) SPEC95 benchmarks, 21264 outperforms 21264 avg. 11.5 mispredictions per 1000 instructions 21164 avg. 16.5 mispredictions per 1000 instructions Reversed for transaction processing (TP)! 21264 avg. 17 mispredictions per 1000 instructions 21164 avg. 15 mispredictions per 1000 instructions TP code much larger & 21164 hold 2X branch predictions based on local behavior (2K vs. 1K local predictor in the 21264) 19/12/2019 UAH-CPE631

Dynamic Branch Prediction Summary Prediction becoming important part of scalar execution Branch History Table: 2 bits for loop accuracy Correlation: Recently executed branches correlated with next branch. Either different branches Or different executions of same branches Tournament Predictor: more resources to competitive solutions and pick between them Branch Target Buffer: include branch address & prediction Predicated Execution can reduce number of branches, number of mispredicted branches Return address stack for prediction of indirect jump 19/12/2019 UAH-CPE631