Given A unit circle with radius = 1, center point at (0,0)

Slides:



Advertisements
Similar presentations
Section 5.3 Trigonometric Functions on the Unit Circle
Advertisements

1.5 Using the Definitions of the Trigonometric Functions OBJ: Give the signs of the six trigonometric functions for a given angle OBJ: Identify the quadrant.
Trigonometry/Precalculus ( R )
Trigonometric Functions on the
Section 5.3 Trigonometric Functions on the Unit Circle
Find the reference angle
Chapter 6 – Trigonometric Functions: Right Triangle Approach Trigonometric Functions of Angles.
Trig/Precalculus Section 5.1 – 5.8 Pre-Test. For an angle in standard position, determine a coterminal angle that is between 0 o and 360 o. State the.
Section 1.4 Trigonometric Functions an ANY Angle Evaluate trig functions of any angle Use reference angles to evaluate trig functions.
Point P(x, y) is the point on the terminal arm of angle ,an angle in standard position, that intersects a circle. P(x, y) x y r  r 2 = x 2 + y 2 r =
Pythagorean Identities Unit 5F Day 2. Do Now Simplify the trigonometric expression: cot θ sin θ.
C H. 4 – T RIGONOMETRIC F UNCTIONS 4.4 – Trig Functions of Any Angle.
Bell Work R Find the 6 trig functions for
§5.3.  I can use the definitions of trigonometric functions of any angle.  I can use the signs of the trigonometric functions.  I can find the reference.
Do Now  .
TRIGONOMETRIC FUNCTIONS OF ANY ANGLE
Trigonometric Functions of Any Angle
Basic Trigonometry An Introduction.
The Other Trigonometric Functions
Pre-Calc: 4.2: Trig functions: The unit circle
Evaluating Angles.
Warm Up Use trigonometric identities to simplify: csc ∙tan
Do Now: A point on the terminal side of an acute angle is (4,3)
12-3 Trigonometric Functions of General Angles
UNIT CIRCLE THE.
Special Angle Values.
Section 4.3: Trigonometry Extended – The Circular Functions
What are Reference Angles?
Trigonometric Function: The Unit circle
4.3A Trigonometric Ratios
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Objectives: Students will learn how to find Cos, Sin & Tan using the special right triangles.
Help I’m trapped in a nutshell
Lesson 4.4 Trigonometric Functions of Any Angle
TRIGONOMETRIC FUNCTIONS OF ANY ANGLE
Mrs. Volynskaya Pre-Calculus Chapter 4 Trigonometry
Trig Functions: the unit circle approach
Worksheet Key 12/2/ :28 PM 13.3: The Unit Circle.
2. The Unit circle.
Trigonometric Functions of Acute Angles
Define General Angles and Radian Measure
Trigonometric Function: The Unit circle
Trigonometric Functions: The Unit Circle (Section 4-2)
47.75⁰ Convert to radians: 230⁰.
Trigonometry Terms Radian and Degree Measure
Unit 7B Review.
Using Fundamental Identities
Unit #6: Graphs and Inverses of Trig Functions
Aim: What are the double angle and half angle trig identities?
4.2 Trigonometric Function: The Unit circle
Lets start with a point. P(x,y) r
Properties of Trig Fcts.
2) Find one positive and one negative coterminal angle to
I II III IV Sin & csc are + Sin & csc are + Cos & sec are +
Trigonometric Functions: Unit Circle Approach
Trig. Ratios in a Coordinate System
Evaluating Angles.
Page ) Sin: –0.9511; Cos: –0.3090, Tan: Quadrant III 17)
Circular Trigonometric Functions.
Build and Use Unit Circle
12.3 Day 3: Trigonometric Functions of General Angles
6.4 - Trig Ratios in the Coordinate Plane
Sec 6.2 Trigonometry of Right Triangles
Conversions, Angle Measures, Reference, Coterminal, Exact Values
Day 49 Agenda: DG minutes.
Review for test Front side ( Side with name) : Odds only Back side: 1-17 odd, and 27.
Academy Algebra II THE UNIT CIRCLE.
5-3 The Unit Circle.
Quick Integral Speed Quiz.
The Circular Functions (The Unit Circle)
Presentation transcript:

Given A unit circle with radius = 1, center point at (0,0) Notes: 5-3 (part 1) Given A unit circle with radius = 1, center point at (0,0) 1 (x, y) sin θ = cos θ = tan θ = Form a right triangle with the x-axis.

csc θ = sec θ = cot θ = sin θ = y cos θ = x tan θ =

Some trig ratios will be negative if the reference angle is in Quadrant II, III, or IV Quadrant II values sinθ = cosθ = tanθ =

Special angles that are located on the axes: examples a. cos 90° = b. tan 270° = c. sin 180° = d. cos 0° =

(from yesterday) radius 45° 60° 45° 30° --------------------------------------------------------------------------------------------------------------------- radius 45° 60° 30° 45°

8. Use the unit circle to find the six trig functions for 225°