Setup used in the study. Setup used in the study. A child interacts with the robot tutor with a large touchscreen sitting between them, displaying the.

Slides:



Advertisements
Similar presentations
Demonstrations I, II, and III.
Advertisements

Degradation of MSP samples in 37°C DPBS solution.
Basic design concept of human mimetic humanoid.
Comparing previous simulation work with current study.
TPAD controller schematic and testing for WPC.
TPAD controller performance for three force components.
Three different types of transfer functions with a codomain of [0,1].
Robot surface tension experiments.
TPAD training protocol.
Self-sensing of actuator position.
Workspace comparison of Delta robots.
Ex vivo testing of the soft robotic devices.
Group data during free walking between sessions 1 and 16.
Distribution of the number of collisions and the average closest-neighbor distance as a function of communication range and delay. Distribution of the.
Visual explanation of the interaction terms.
Soft robotic VAD implementations, control schemes, and HF models.
Visual explanation of the interaction terms.
Power-free sterilization of culture plate.
AEGIS intelligent targeting compared with blind targeting.
Prosthesis grasping and control.
A novice user executing various subtasks from study 1.
Tukey boxplots overlaid on data points from objective and subjective measures, displaying results from study 1. Tukey boxplots overlaid on data points.
Tactile features for prosthesis perception.
Online verification using reachable occupancies.
Cell viability tests. Cell viability tests. SEM images of (A) MC3T3-E1 cells and (B) MSCs on days 1, 3, and 5 of culture. (C) Survival rates of MC3T3-E1.
Overview of the key stages (sensing, perception, and interaction) during robot-assisted autism therapy. Overview of the key stages (sensing, perception,
Prosthesis system diagram.
Microrobots with different cell-carrying capacities under different grid lengths (lg) and burr lengths (lb). Microrobots with different cell-carrying capacities.
Self-sensing of actuator position.
2D motility characterization and external magnetic steering of RBC microswimmers. 2D motility characterization and external magnetic steering of RBC microswimmers.
Brain-computer interfaces.
Experimental setup for workspace, bandwidth, and force characterization of the milliDelta. Experimental setup for workspace, bandwidth, and force characterization.
Untethered kirigami-skinned soft crawlers.
Degradation of MSP samples in 37°C DPBS solution.
Fig. 3 Rotation experiment, setup.
Underwater observatory.
Fluorescence response of actuator.
Construction of a biohybrid robot with an antagonistic pair of skeletal muscle tissues. Construction of a biohybrid robot with an antagonistic pair of.
The two modalities for the multitask condition.
Potential applications of the light-induced actuator.
Simulation results of magnetic driving ability in hepatic artery, portal vein, and hepatic vein. Simulation results of magnetic driving ability in hepatic.
In vitro cell-release experiments on a glass substrate.
RAD sampler design. RAD sampler design. (A) One arm of the RAD sampler with revolute joints shown as dotted lines. A fold is initiated by rotating the.
Folding unit based on the plane symmetric Bricard linkage.
Fig. 2 2D QWs of different propagation lengths.
Capture sequences of a RAD-equipped deep-sea vehicle operating in the Monterey Bay Canyon. Capture sequences of a RAD-equipped deep-sea vehicle operating.
Object manipulations performed by our biohybrid robots.
Overhead snapshots. Overhead snapshots. (A to E) Mark I3, robot experiments (movie S1). (F) Mark I3, simulation (movie S2, side by side with a run on the.
Results of a representative participant with multiple training sessions. Results of a representative participant with multiple training sessions. Average.
AEGIS autonomous targeting process.
Overview of the experimental setup and visual stimulus.
Fig. 1 Average contribution (million metric tons) of seafood-producing sectors, 2009–2014. Average contribution (million metric tons) of seafood-producing.
Details of seal design. Details of seal design. (A) RAD sampler (left), with close-up view (right) indicating the soft edges that form the light seal.
Response of the actuator to different stimulations.
Laboratory tests. Laboratory tests. (A) Time lapse of the landing process, refilling process, and subsequent launch. (B) Comparison of position and velocity.
Discrimination accuracy across conditions.
State-of-the-art midwater sampling tools.
Kinematic and mechanical advantage trade-off study.
Characterization and optimization of the device.
The biomimetic pressure sensing ability.
Iron line orientation inside the PDMS matrix.
Fig. 1 Schematic depiction of a paradigm for rapid and guided discovery of materials through iterative combination of ML with HiTp experimentation. Schematic.
Floating microrobots with different preferred magnetization directions: Fabrication and control principles. Floating microrobots with different preferred.
Breakdown of incorrect participant responses.
Onboard sensors enable state feedback and closed-loop control of robotic skins. Onboard sensors enable state feedback and closed-loop control of robotic.
Robot-assisted intervention system.
Robot-initiated joint attention.
Cartoon model for the increased p-HLA display engendered by peptide splicing. Cartoon model for the increased p-HLA display engendered by peptide splicing.
Evaluating the performance of the robotic system through comparison with human trackers. Evaluating the performance of the robotic system through comparison.
Comparison of children’s behavior between the three conditions.
Presentation transcript:

Setup used in the study. Setup used in the study. A child interacts with the robot tutor with a large touchscreen sitting between them, displaying the learning activity; a human teacher provides guidance to the robot through a tablet and monitors the robot’s learning. Although the picture depicts an early laboratory pilot, the main study was conducted on actual school premises. Emmanuel Senft et al. Sci. Robotics 2019;4:eaat1186 Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works